Polska
Katalog   /   Komputery   /   Podzespoły   /   Obudowy
Obudowy Deepcool 

Artykuły, recenzje, przydatne porady

Wszystkie materiały
Opinie na temat marek z kategorii obudowy
Ranking marek z kategorii obudów został sporządzony na podstawie recenzji i ocen użytkowników serwisu
05.2024
Ranking obudów (maj)
Wskaźnik popularnościobudów oparty jest na kompleksowej statystyce dotyczącej zainteresowań użytkowników
Najlepsze kompaktowe obudowy
Praktyczne obudowy do budowy kompaktowego PC na bazie płyt głównych micro-ATX i Mini-ITX
Budowanie zaawansowanego komputera do gier dla Forspoken
Mocny PC z procesorem Ryzen 7, kartą graficzną GeForce RTX 4070 Ti i systemem chłodzenia cieczą
Budowa niedrogiego komputera do gier dla Company Of Heroes 3
Niedrogi komputer do gier poniżej 800 USD z procesorem Core i3-12100F, Radeonem RX 6600 i 16 GB pamięci RAM
Jak złożyć komputer samodzielnie
Przyśpieszony kurs składania komputerów o różnym stopniu złożoności, przeznaczony dla początkujących i amatorów
Najlepsze obudowy komputerowe z oknem
Niedrogie obudowy z oknem do montażu designerskiej jednostki systemowej z podświetleniem
Potężny, gorący i drogi: Recenzja procesora Ryzen 7000
Zrozumienie nowej architektury Zen 4, gniazda AM5, pamięci DDR5 i samych procesorów Ryzen 7000 Raphael

Obudowy: specyfikacje, typy, rodzaje

Przeznaczenie

Przeznaczenie obudowy. Parametr ten jest wskazywany tylko dla modeli o określonej specjalizacji i wyraźnie różniących się od obudów ogólnego przeznaczenia.

- Do gier. Obudowy przeznaczone do wysokowydajnych systemów komputerowych do gier. Zwykle posiadają dużą liczbę otworów na gniazda rozszerzeń i wnęki na napędy (patrz odpowiednie punkty), a także zaawansowane opcje instalacji systemów chłodzenia - wiele „miejsc” na wentylatory, możliwość zastosowania chłodzenia cieczą (patrz „Obsługa chłodzenia cieczą”) itp. Ponadto często wyróżniają się designem: można je wyposażyć w oświetlenie dekoracyjne, przezroczyste okna itp.

- HTPC. Obudowy do komputerów multimedialnych, tzw. Home Theatre Personal Computer (HTPC). Typowymi cechami takich obudów są kompaktowe wymiary, obecność dodatkowych przycisków na przednim panelu do sterowania multimediami (a czasem czujnika do pilota) oraz zaawansowany design.

Typ

Współczynnik kształtu określa przede wszystkim wewnętrzną objętość obudowy (w rezultacie - używaną do niej płytę główną, patrz „Rodzaj płyty głównej”), a także funkcje montażu. Obecnie obudowy komputerów występują w następujących głównych formach:

Full Tower. Pionowa obudowa jest obecnie jednym z największych współczynników kształtu do komputerów: szerokość wynosi 15-20 cm, wysokość 50-60 cm, liczba zatok z dostępem z zewnątrz może sięgać 10. Najczęściej w tym formacie produkowane są obudowy komputerów o wysokiej wydajności.

Ultra Tower. Dalszy rozwój i rozbudowa obudów Full Tower (patrz wyżej), oferujących jeszcze więcej miejsca na „wypełnienie”: szerokość takiej obudowy to około 25 cm, wysokość może dochodzić nawet do 70 cm, co pozwala na rozbudowane konfiguracje wewnątrz i zapewnia wystarczająco dużo wolnej przestrzeni do efektywnego chłodzenia.

Midi Tower. Przedstawiciel rodziny Tower (obudowy z pionowym montażem) średniej wielkości - około 45 cm wysokości i 15-20 cm szerokości, z liczbą zewnętrznych zatok od 2 do 4. Najpopularniejsze dla domowych komputerów klasy średniej.

Mini Tower. Najbardziej kompaktowa pionowa obudowa, o szerokości 15-20 cm i wysokości około 35 cm, ma (zazwyczaj) nie więcej niż 2 zatoki z dostępem z zewnątrz. Służy głównie do montażu komputerów biurowych, które nie wy...magają wysokiej wydajności.

Desktop. Obudowy przeznaczone do montażu bezpośrednio na biurku. Często mają możliwość montażu poziomego – dzięki czemu monitor można postawić na obudowie – choć zdarzają się też modele, które montuje się stricte pionowo. Rozmiar takich obudów może być praktycznie dowolny - od miniaturowych rozwiązań do płyt głównych thin mini ITX po duże obudowy do E-ATX (patrz „Rodzaj płyty głównej”). Jednak większość obudów typu „Desktop” jest stosunkowo niewielka.

— Cube Case. Obudowy sześcienne lub o podobnym kształcie. Mogą mieć różne wymiary i są przeznaczone do różnych rodzajów płyt głównych, ten punkt w każdym przypadku należy doprecyzować osobno. Tak czy inaczej, takie obudowy mają dość oryginalny wygląd, który różni się od tradycyjnych „wież” i „desktopów”.

— Dual Tower. Dość rzadka opcja — obudowa wielkością i proporcjami przypomina dwie „wieże”, ułożone obok siebie. Rozwiązania Dual Tower mają duże rozmiary i są przeznaczone głównie do wydajnych komputerów stacjonarnych (w szczególności do najwyższej klasy stacji do gier).

Zwróć uwagę, że istnieją modele, które umożliwiają zarówno montaż pionowy, jak i poziomy i mogą w rzeczywistości przekształcać się z „wieży” w „desktop” i odwrotnie. W takich przypadkach współczynnik kształtu jest wskazywany według współczynnika kształtu podanego w dokumentacji producenta lub według opisanego tam podstawowego sposobu montażu.

Ustawienie

Sposób montażu zwykle zakładany przez konstrukcję obudowy.

- Pionowy. Obudowy tego typu po zainstalowaniu zajmują znacznie więcej miejsca na wysokości niż na szerokości. Ta opcja jest standardowa dla wszystkich obudów typu Tower (patrz „Współczynnik kształtu”). Jest to wygodne, ponieważ montaż wymaga stosunkowo mało wolnego miejsca na podłodze lub innym podparciu. Wiele z tych obudów jest przeznaczonych głównie do ustawienia na podłodze lub podobnego ustawienia (na przykład w specjalnej przegrodzie biurka komputerowego, pod blatem), chociaż istnieją inne opcje - montaż na biurku, a nawet montaż z tyłu monitora.

- Poziomy. Obudowy instalowane poziomo. Jest to standardowa metoda instalacji dla większości komputerów desktopowych (patrz „Współczynnik kształtu”). Właściwie taki układ jest wygodny przy postawieniu komputera na biurku – w szczególności monitor można postawić bezpośrednio na obudowie lub w niektórych przypadkach obok obudowy.

- Pionowy i poziomy. Uniwersalne obudowy, które można ustawiać zarówno w pionie, jak i w poziomie, w zależności od konkretnych warunków. Eliminuje to do pewnego stopnia kłopoty z montażem – uniwersalny model można dostosować do specyfiki każdego miejsca pracy. Co więcej, ta opcja dostępna jest zarówno wśród miniaturowych obudów, jak i pełnowymiarowych.

Należy pamiętać, że chociaż technicznie nie jest trud...no zainstalować obudowę w sposób inny niż natywny (na przykład pionowy - na boku), nadal nie jest to zalecane. Przecież sama konstrukcja została początkowo zoptymalizowana pod konkretną pozycję – wystarczy powiedzieć, że ma to związek w szczególności z wydajnością układów chłodzenia.

Standard płyty głównej

Rodzaj płyty głównej, dla której jest przeznaczona konstrukcja. Parametr ten jest wskazywany według współczynnika kształtu płyty głównej, dla której zaprojektowana jest obudowa. Opcje mogą być następujące:

- ATX. Jeden z najpopularniejszych obecnie rodzajów płyt głównych, standardowy rozmiar ATX to 30,5 x 24,4 cm. Jest używany zarówno w domowych, jak i biurowych komputerach klasy średniej.

- XL-ATX. Ogólna nazwa dla kilku standardów płyt głównych, zjednoczonych, jak sama nazwa wskazuje, są dość dużymi wymiarami i odpowiednim wyposażeniem. Konkretne wartości dla tych wymiarów mogą wahać się od 324 do 345 mm długości i od 244 do 264 mm szerokości, w zależności od producenta i modelu. W związku z tym wybierając taką obudowę, warto osobno wyjaśnić jej kompatybilność z konkretną płytą główną.

- E-ATX (Extended ATX). Największy rodzaj płyt głównych, dla których wykonywane są nowoczesne obudowy, ma wymiary 30,5x33 cm i jest zwykle stosowany w systemach o wysokiej wydajności, które wymagają dużej liczby gniazd rozszerzeń.

- micro-ATX (m-ATX). Kompaktowa wersja płyty ATX, ma wymiary 24,4x24,4 cm. Głównym obszarem zastosowania takich płyt są systemy biurowe, które nie wymagają wysokiej wydajności.

- mini-ITX. Jedna z kolejnych, po m-ATX, zmniejszonych wersji formatu pły...t głównych, zakłada rozmiar płyty około 17x17 cm i jedno (najczęściej) gniazdo rozszerzeń. Przeznaczona również do kompaktowych systemów, które nie wyróżniają się wydajnością.

- Thin mini-ITX. Modyfikacja opisanej powyżej mini-ITX, zaprojektowana w celu zmniejszenia grubości obudowy (do 25 mm), a kości pamięci RAM nie wystają i leżą na płycie głównej równolegle do samej płyty (więcej szczegółów, patrz „Współczynnik kształtu”). Podobnie jak większość kompaktowych wersji, płyty Thin mini-ITX nie oferują dużej mocy obliczeniowej.

Zauważ, że większość obudów pozwala również na instalację płyt głównych o mniejszych wymiarach - na przykład wiele obudów na E-ATX może być używanych z płytami głównymi ATX. Jednak w każdym przypadku konkretną kompatybilność należy wyjaśnić osobno.

Umiejscowienie płyty głównej

Położenie płyty głównej w obudowie; implikuje się, że obudowa znajduje się w normalnej pozycji.

Najwygodniej jest umiejscowić płytę główną wzdłuż obudowy - daje to najwięcej miejsca na nią (a płyty główne, jak pamiętamy, mają duży rozmiar). A ponieważ największą popularnością w dzisiejszych czasach cieszą się obudowy o układzie pionowym (głównie te lub inne rodzaje "wież"), zatem płyty w nich umieszczane są pionowo. Zdecydowanie rzadziej może występować układ poziomy – w poszczególnych Mini-Towerach i „kostkach” (Cube Cases), których wysokość nie jest dużo większa niż szerokość, a także w desktopach, przeznaczonych do umiejscowienia poziomego.

Wsteczne podłączenie płyty głównej

Główną atrakcją w konstrukcji tych obudów są wycięcia w ścianie dla płyt głównych z odwróconymi złączami. W takich „płytach głównych” porty do podłączenia urządzeń pamięci masowej, zasilaczy i innych podzespołów zostały przeniesione ze zwykłych miejsc na tylny panel. Obudowy z odwrotnym podłączeniem do płyty głównej pomagają utrzymać przewody wewnątrz jednostki systemowej poza zasięgiem wzroku i mądrze organizują zarządzanie kablami, zwiększając atrakcyjność wizualną jednostek systemowych dzięki przezroczystej ścianie bocznej.

Dual system

Obudowa zaprojektowana tak, aby pomieścić w ciągu nocy dwa niezależne systemy komputerowe. Z reguły są one zaprojektowane z dwiema oddzielnymi przegródkami, z których każda jest zaprojektowana tak, aby pomieścić oddzielną płytę główną, procesor, pamięć RAM, pamięć danych i inne komponenty. Systemy podwójne można znaleźć wśród stacji serwerowych, maszyn zwiększających produktywność, komputerów do gier dla twórców treści i innych podobnych konstrukcji.

Otwarta

Obudowy, które sprawiają, że „wypełnienie” komputera jest jak najbardziej otwarte (lub przynajmniej widoczne). Konkretne opcje projektowe dla takich produktów mogą być różne: na przykład istnieją „wieże” (patrz „Współczynnik kształtu”), wyposażone tylko w ścianki boczne lub pokryte przezroczystymi panelami ze wszystkich stron. Otwarte obudowy są szczególnie cenione przez graczy i entuzjastów zewnętrznego tuningu. Jednocześnie taka konstrukcja nie tylko nadaje obudowie oryginalny wygląd, ale pełni również funkcję całkowicie praktyczną: poprawia cyrkulację powietrza w obudowie (a co za tym idzie wydajność chłodzenia), a także ułatwia dostęp do elementów systemu w celu ich wymiany. Oprócz ceny, główną praktyczną wadą otwartych obudów jest to, że prawie nie chronią „wypełnienia” komputera przed kurzem; więc sprzątanie w takiej obudowie będzie musiało być wykonywane dość często.

Standard zasilacza

Współczynnik kształtu zasilacza, dla którego zaprojektowana jest obudowa. Współczynnik kształtu zasilacza jest wskazywany według typu płyt głównych, dla których zasilacz jest początkowo zaprojektowany; jednak wiele współczynników kształtu jest wzajemnie kompatybilnych.

ATX (zwykły). Współczynnik kształtu zaprojektowany dla pełnowymiarowych obudów, głównie typu Tower i Desktop (patrz „Współczynnik kształtu”). Zasilanie płyty głównej - ze złącza 24-pinowego (w starszych wersjach - 20-pinowego); ponadto takie zasilacze zwykle zapewniają dodatkową wtyczkę zasilania dla procesora (4-pinową, 8-pinową, a czasem obie).

-FlexATX. Współczynnik kształtu FlexATX przeznaczony dla miniaturowych płyt głównych (pod względem rozmiaru i rozmieszczenia otworów montażowych takie płyty są kompatybilne z microATX). W związku z tym zasilacze dla nich są kompaktowe i mają zwiększoną wydajność. Są kompatybilne z wieloma miniaturowymi płytami głównymi, w tym wspomnianymi już microATX i mini-ITX, a główne złącza są takie same jak w ATX (może z wyjątkiem wersji 20-pinowej).

TFX. Skrót TFX pochodzi od Thin Form Factor - tj. „cienki współczynnik kształtu”. Jest to jeden z kompaktowych zasilaczy stosowanych w systemach o miniaturowym formacie; pod względem kompatybilności jest podobny do opisanego powyżej microATX, a pod względem złączy — do ATX.

...f="/list/193/pr-16206/">SFX. Inny typ zasilaczy o zmniejszonych wymiarach stosowanych w układach kompaktowych (S - od „small”, czyli „mały”). Pod względem złączy jest uważany za całkowicie wymienny z ATX, zasadniczo różni się tylko rozmiarem.

Zewnętrzny. Obudowy, w których w ogóle nie ma miejsca na zasilacz wewnętrzny, przeznaczone są do podłączenia zasilacza zewnętrznego. Ta konstrukcja znajduje się głównie wśród najmniejszych obudów (w szczególności dla płyt głównych mini-ITX i Thin mini-ITX). Należy pamiętać, że w tym przypadku chodzi nie o każdą obudowę z zewnętrznym zasilaczem, ale tylko o modele, które nie mają wbudowanych konwerterów (patrz poniżej) i są przeznaczone do płyt głównych z własnym złączem do zewnętrznego zasilacza.

— Zewnętrzny z konwerterem. Obudowy przeznaczone do zasilaczy zewnętrznych (patrz wyżej) i wyposażone we wbudowane konwertery. Konwerter wyprowadza zasilanie z zewnętrznego zasilacza do szeregu złączy „komputerowych”, w szczególności do standardowego 24-pinowego złącza zasilania płyty głównej. Można więc w takim przypadku zainstalować płytę główną z tradycyjnym zasilaczem ATX w formacie 24-pinowym.

Długość zasilacza, do

Możliwa długość zasilacza, który można zamontować w obudowie.

Długość karty graficznej, do

Maksymalna długość karty graficznej, którą można zainstalować w tej obudowie.

Nowoczesne wysokowydajne karty graficzne średniego i najwyższego poziomu często wyróżniają się znaczną długością, dlatego taka karta nie pasuje do każdej obudowy. Wobec tego przed zebraniem komponentów warto ocenić długość planowanej karty graficznej i wybrać obudowę, w której na pewno się zmieści. Takie przewidywanie nie będzie zbyteczne w żadnym wypadku, ale jest szczególnie istotne, jeśli budujesz system, który wymaga wydajnej karty graficznej - na przykład wysokiej klasy komputer do gier lub stację roboczą do projektowania 3D.

Wysokość chłodzenia CPU, do

Najwyższa dopuszczalna wysokość chłodnicy dla tej obudowy.

W tym przypadku chodzi o chłodnicę służącą do chłodzenia procesora – taki komponent jest dostępny w zdecydowanej większości współczesnych komputerów. Wysokość mierzona jest względem płyty głównej.

Materiał

Materiał, z którego wykonana jest obudowa.

Stal. Obudowy stalowe są trwałe, odporne na zarysowania i stosunkowo niedrogie. Są dość ciężkie, jednak biorąc pod uwagę, że większość komputerów nie jest przystosowana do częstego transportu z miejsca na miejsce, ten szczegół trudno nazwać krytycznym. Dzięki temu materiał ten znajduje zastosowanie w zdecydowanej większości współczesnych obudów wszystkich typów, specjalizacji i kategorii cenowych.

Aluminium. Obudowy aluminiowe są lekkie, zapewniają lepsze przenoszenie ciepła do otoczenia i mają przeważnie stylowy wygląd, ale są droższe i bardziej podatne na zarysowania niż obudowy stalowe. Przeznaczone są przede wszystkim do systemów ze średniej i wyższej półki, gdzie koszt obudowy jest znikomy w porównaniu z ceną komponentów, a wspomniane zalety mają decydujące znaczenie.

Szkło hartowane. W tym przypadku chodzi o obudowy wykonane ze szklanych paneli zamocowanych na metalowej ramie, najczęściej stalowej. Same panele niekoniecznie są wykonane ze szkła: przynajmniej górny i dolny są zwykle wykonane z nieprzezroczystego materiału, najczęściej z tego samego metalu. Generalnie takie obudowy należą do rozwiązań projektowych tworzonych z oczekiwaniem oryginalnego wyglądu: wyglądają naprawdę ciekawie, co jest bardzo cenione przez fanów moddingu. Jednocześnie z praktycznego punktu widzenia szkło nie ma żad...nej przewagi nad metalem, wręcz przeciwnie: materiał ten jest dość delikatny i wymaga ostrożnej obsługi, ale nie jest tani.

Grubość bocznych ścianek

Grubość ścian bocznych, użytych w obudowie. Wybierając grubość, producenci muszą szukać kompromisu między kilkoma punktami naraz. Z jednej strony, cienkie ściany są niedrogie i ciepło przez nie rozprasza się szybciej, co ma pozytywny wpływ na wydajność chłodzenia. Z drugiej strony, grube ściany są niezbędne w przypadku wydajnych systemów, w przeciwnym razie obudowa może po prostu nie wytrzymać wagi zaawansowanych podzespołów. Po trzecie, stal to dość mocny materiał, nawet przy stosunkowo niewielkiej grubości. W związku z tym w większości modeli wskaźnik ten nie przekracza 0.70,8 mm, a częściej wynosi około 0.50,6 mm.

Gumowane nóżki

Obecność gumowanych nóżek w konstrukcji obudowy.

Te nóżki pochłaniają wibracje z komputera (głównie z wentylatorów i napędów optycznych), zmniejszając w ten sposób hałas i zapewniając dodatkowy komfort. Gumowane nóżki są szczególnie pożądane, gdy komputer stoi na biurku (na blacie albo w specjalnej komorze biurka) lub na twardej podłodze.

Rodzaj podświetlenia

Rodzaj podświetlenia przewidzianego w konstrukcji obudowy.

Podświetlenie pełni głównie rolę dekoracyjną, nadaje komputerowi oryginalny wygląd, co docenią miłośnicy zewnętrznego tuningu. Oświetlenie można również zamontować osobno, ale łatwiej jest kupić obudowę, w której było pierwotnie przewidziane. Rodzaje podświetlenie mogą być następujące:

— Podświetlany wentylator. Podświetlana jest jedna lub kilka chłodnic wychodzących na boczną lub górną powierzchnię obudowy.

Podświetlana obudowa. Poszczególne części obudowy są podświetlane, najczęściej od wewnątrz, dzięki czemu podświetlenie widać przez przezroczyste okno/okna lub powierzchnię siatkową. Czasami można również zapewnić podświetlenie zewnętrzne.

Spotyka się obudowy, w których oba rodzaje podświetlenia są zapewnione jednocześnie. A do potrzeb biurowych odpowiednie są obudowy bez podświetlenia.

Kolor podświetlenia

Aby uzyskać szczegółowe informacje na temat oświetlenia dekoracyjnego, patrz „Typ podświetlenia” powyżej. Tutaj zauważamy, że może ono mieć różne odcienie, a czasami w specyfikacji wskazuje się kilka opcji jednocześnie. Jeśli te opcje są wymienione z „i” (na przykład „czerwony, niebieski i zielony”), oznacza to, że ten model zawiera wszystkie wskazane kolory, a użytkownik może przełączać się między nimi według własnego uznania. Jeśli odcienie są wymienione za pomocą „lub” (na przykład „czerwony, niebieski lub zielony”), oznacza to, że ten model jest dostępny w kilku modyfikacjach różniących się kolorem podświetlenia.

Osobno warto wspomnieć o opcji „RGB”. To nazwa najbardziej zaawansowanego podświetlenia, którego odcień można wybrać według własnego uznania. Co prawda, oryginalne podświetlenie RGB może wyświetlać jednocześnie tylko jeden z kilku podstawowych kolorów (biały, żółty, zielony, czerwony, niebieski lub fioletowy); niemniej jednak nawet te możliwości wystarczą, aby dostosować wygląd obudowy i zastosować różne efekty (np. synchronizację podświetlenia – patrz niżej).

A stosunkowo niedawno pojawił się jeszcze bardziej zaawansowany rodzaj regulowanych systemów - podświetlenie ARGB. Kluczową różnicą pomiędzy ARGB a klasycznym RGB jest możliwość jednoczesnej pracy diod o różnych kolorach. Innymi słowy, klasyczne podświetlenie RGB może wyświetlać tylko jeden kolor na raz, podczas gdy ARGB może wyświetlać kilka kolorów w...celu uzyskania dodatkowych efektów. Również podświetlenie ARGB jest podłączane za pomocą złącza 3pin 5v, podczas gdy zwykłe RGB używa złącza 4pin 12v. Może być reprezentowane przez różne rodzaje podświetlenia. Tym samym ARGB jest często zintegrowane z układem chłodzenia, panelem przednim i magnetycznymi paskami LED, które użytkownik może zamontować według własnego uznania. Do sterowania podświetleniem zwykle dostarczany jest specjalny kontroler, a przyciski lub pokrętła do przełączania trybów pracy podświetlenia są umieszczone na panelu interfejsu. W niektórych przypadkach podświetleniem steruje płyta główna za pomocą specjalnego złącza. Wiele systemów ARGB obsługuje możliwość dostrajania za pomocą specjalistycznego oprogramowania.

Synchronizacja podświetlenia

Technologia synchronizacji zapewniona w podświetlanej obudowie (patrz „Typ podświetlenia”).

Sama synchronizacja pozwala „dopasować” podświetlenie obudowy do podświetlenia innych elementów systemu - płyty głównej, karty graficznej, klawiatury, myszy itp. Dzięki temu dopasowaniu wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać /wyłączać itp. Warto zauważyć, że wszystkie takie układy mają podświetlenie RGB. Konkretne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoją własną (Mystic Light Sync dla MSI, Aura Sync dla Asus itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty jednego producenta.

Panel boczny

— Zdejmowany panel. Otwieranie przez usunięcie jednego lub więcej paneli jest najpopularniejszą opcją we współczesnych obudowach PC. Ta konstrukcja jest niedroga, wygodna i praktyczna, a także nadaje się do obudów o dowolnej formacie (patrz wyżej). Konkretna budowa takiego systemu otwierania zależy przede wszystkim od współczynnika kształtu, a dokładniej od ogólnego układu obudowy. Tak więc w produktach pionowych (ten lub inny typ Tower) oba panele boczne są zwykle zdejmowane, w poziomych urządzeniach typu Desktop - panel górny, a w Cube Case opcje mogą być różne.

— Pokrywa w kształcie litery U. Jednoczęściowa pokrywa o charakterystycznym kształcie litery „U” zakrywająca obudowę jednocześnie z boków i od góry. Tak więc, gdy taka pokrywa zostanie zdjęta, okazuje się, że obudowa jest otwarta z trzech stron jednocześnie. W niektórych przypadkach (np. do dostępu do górnej zatoki 5,25 cala) funkcja ta jest bardzo przydatna. Jednocześnie pokrywy w kształcie litery U są dość nieporęczne, wyjąć i założyć taką część jest znacznie trudniej niż do wykonywać te czynności z oddzielnymi zdejmowanymi panelami; dotyczy to szczególnie obudów typu Tower o pionowym układzie. Dlatego ten mechanizm otwierania jest obecnie rzadkością, prawie wyłącznie w produktach typu Desktop i CubeCase.

Drzwi. Kolejny dość rzadki mechanizm otwierania, w tym przypadku typowy dla obudów w różnych odmianach współczynnika kształtu Tower. Nazwa dość dokładnie...oddaje sposób działania tego mechanizmu: boczny panel obudowy nie jest usuwany, ale otwiera się na bok jak drzwi na zawiasach. Główną zaletą tej opcji jest to, że do mocowania drzwi w pozycji zamkniętej często służy wygodny zamek, który można otworzyć bez specjalnych narzędzi - na przykład poprzez naciśnięcie przycisku. To znacznie ułatwia dostęp do zawartości obudowy, zwłaszcza gdy trzeba dostroić lub szybko wymienić poszczególne elementy komputera. Natomiast otwartych drzwi nie da się odłożyć na bok jak zdejmowany panel, a w niektórych sytuacjach mogą one powodować niedogodności, zwisając z obudowy. Ponadto taka konstrukcja kosztuje nieco więcej niż te same zdejmowane elementy. Dlatego drzwi są w naszych czasach rzadkością - głównie w poszczególnych modelach do gier (patrz „Przeznaczenie”).

Zasilacz

Obecność zasilacza w dostarczonym zestawie obudowy. Taki kompletny zestaw oszczędza użytkownikowi konieczności samodzielnego zakupu zasilacza i kłopotów z kompatybilnością - zasilacz z zestawu z definicji jest optymalny dla obudowy. Zasilacz ten jednak może nie nadawać się do planowanego montażu systemu - np. z powodu niewystarczającej mocy lub braku wymaganej liczby złączy. Dlatego przed zakupem należy zapoznać się ze szczegółową specyfikacją zasilacza z zestawu i upewnić się, że jest on odpowiedni dla wybranej konfiguracji. Jeśli konfiguracja nie jest do końca znana (np. planowane jest stopniowe kupowanie komponentów lub nie zdecydowałeś się jeszcze na konkretny zestaw komponentów), warto wybrać obudowę bez zasilacza i zaopatrzyć się w zasilacz na sam koniec, gdy wymagania dla niego będą wreszcie jasne.

Moc dołączonego zasilacza

Moc wyjściowa zasilacza dostarczonego w zestawie z obudową (patrz „Zasilacz”). Moc ta nie może być mniejsza niż całkowity pobór mocy systemu, który planuje się zmontować w tej obudowie - w przeciwnym razie zasilacz po prostu nie „wyciągnie” systemu.

Umiejscowienie zasilacza

Rozmieszczenie zasilacza (lub miejsca na zasilacz) w obudowie.

Tradycyjną opcją jest górne rozmieszczenie zasilacza, dla wielu jest to zwykła i znana opcja. Jednak w górnej części obudowy gromadzi się ogrzane powietrze z innych komponentów systemu, zmniejszając wydajność chłodzenia. Obudowy z dolnym rozmieszczeniem zasilacza nie mają tej wady, ale dostaje się do nich dużo kurzu i innych zanieczyszczeń, jeśli jednostka systemowa jest zainstalowana na podłodze. Jednak różnica ta staje się krytyczna tylko w przypadku korzystania z systemów o wysokiej wydajności z odpowiednim rozpraszaniem ciepła; w przypadku zwykłego domowego komputera lokalizacja zasilacza jako całości nie jest ważna.

Należy również zauważyć, że w miniaturowych obudowach, takich jak mini-Tower (patrz „Współczynnik kształtu”), zasilacz zainstalowany na górze może zachodzić na część płyty głównej, co dodatkowo pogarsza wydajność chłodzenia i utrudnia montaż dużych chłodnic procesora; jednak wszystko zależy od układu konkretnego przypadku.

Liczba zatok 5,25"

Liczba zatok 5,25 cala przewidzianych w konstrukcji obudowy. Takie zatoki są wykonane tylko jako zewnętrzne, to znaczy są dostępne z zewnątrz bez otwierania obudowy (w przeciwieństwie do 3,5 cala, patrz odpowiednie punkty glosariusza). Obecnie zatoki 5,25 cala służą głównie do instalowania napędów optycznych, wewnętrznych dysków twardych w wymiennych adapterach -"kieszeniach" (Mobile Rack), czasami - dodatkowych wentylatorów. Również w takich zatokach za pomocą specjalnych adapterów można instalować urządzenia 3,5 cala. Przeważnie obudowy są wyposażone w jedną zatokę 5,25 cala lub dwie zatoki. Ale są modele z 3 lub więcej zatokami, a także obudowy bez zewnętrznych zatok.

Liczba zatok zewnętrznych 3,5"

Liczba zatok zewnętrznych na komponenty o formacie 3,5 cala, przewidziana w obudowie. Nazwa "zewnętrzne" oznacza, że zatoka ma wyjście na zewnątrz (zwykle na przedni panel) i można się do niej dostać bez otwierania obudowy. Jedną z najpopularniejszych opcji wykorzystania takich slotów jest instalacja czytników kart pamięci, ponadto można je wykorzystać do innych komponentów - w szczególności koncentratorów USB.

Liczba zatok odpowiada liczbie komponentów zewnętrznych, które mogą być jednocześnie zainstalowane w obudowie. Jednak ten współczynnik kształtu na obwodzie zewnętrznym nie jest zbyt popularny, więc obudowy z więcej niż 2 takimi zatokami są rzadkie.

Liczba zatok wewnętrznych 3,5"

Liczba wewnętrznych zatok 3,5 cala, zapewniona w konstrukcji obudowy. Takie zatoki, jak sama nazwa wskazuje, są przeznaczone na wewnętrzne komponenty, głównie dyski - dyski twarde i niektóre moduły SSD; aby uzyskać do nich dostęp, obudowa musi zostać zdemontowana.

Teoretycznie liczba zatok odpowiada maksymalnej liczbie napędów, które można zainstalować w obudowie. Jednak w praktyce najlepszą opcją jest instalowanie dysków przez jedno gniazdo, aby zapewnić efektywne chłodzenie. W związku z tym najlepiej jest tak dobrać obudowę, aby liczba wewnętrznych zatok 3,5 cala była dwukrotnie większa niż oczekiwana liczba dysków twardych.

Liczba zatok wewnętrznych 2,5"

Liczba zatok wewnętrznych w formacie 2,5 cala przewidziana w konstrukcji obudowy.

Te zatoki są używane głównie do instalowania wewnętrznych dysków twardych i modułów SSD; współczynnik kształtu 2,5 cala został pierwotnie stworzony do laptopów, ale ostatnio jest coraz częściej stosowany w podzespołach do pełnowymiarowych komputerów osobistych. Jednocześnie, oceniając liczbę tych zatok, należy pamiętać, że zaleca się instalowanie dysków przez slot; więc idealnie liczba zatok powinna być dwukrotnie większa od planowanej liczby dysków.

Należy również zauważyć, że w niektórych przypadkach używane są zatoki combo: początkowo mają rozmiar 3,5 cala, ale w razie potrzeby można je przekonwertować na 2,5 cala. Te zatoki liczą się zarówno jako sloty 3,5-calowe, jak i 2,5-calowe. W praktyce oznacza to, że całkowita liczba dostępnych slotów nie zawsze jest równa sumie obu. Na przykład 10-zatokowa 3,5-calowa i 6-zatokowa 2,5-calowa obudowa może mieć 4 zatoki combo, a łączna liczba slotów w tym przypadku nie będzie wynosiła 16, a tylko 12.

Liczba slotów rozszerzeń

Liczba slotów na karty rozszerzeń znajdujących się na tylnym panelu obudowy.

Sama karta rozszerzeń (karta graficzna, karta dźwiękowa, tuner TV itp.) jest instalowana w slocie na płycie głównej, a w slocie na tylnym panelu obudowy jest mocowany zewnętrzny panel takiej karty z wejściami i wyjściami. Im więcej slotów w obudowie, tym więcej kart rozszerzeń można w niej zainstalować. Należy pamiętać, że niektóre karty mogą zajmować jednocześnie dwa, a nawet trzy sloty; jest to szczególnie powszechne w przypadku wydajnych kart graficznych. Zwracać uwagę na liczbę slotów jednak musisz, głównie jeśli montujesz potężny system o wysokiej wydajności. W przypadku zwykłego domowego komputera w większości przypadków wystarczy jeden slot na kartę graficzną; a w wielu konfiguracjach sloty w tylnym panelu nie są w ogóle wykorzystywane.

Pionowy montaż karty graficznej

Możliwość instalacji karty graficznej pionowo w obudowie, przednią stroną do bocznego panelu. W tym celu w konstrukcji przewidziano odpowiedni uchwyt, a karta graficzna jest podłączona do płyty głównej za pomocą specjalnego przedłużacza - taśmy Riser. Ta cecha występuje w otwartych obudowach i modelach z okienkiem (patrz odpowiednie punkty), jej przeznaczenie jest przede wszystkim estetyczne: pionowo umieszczona karta graficzna jest wyraźnie widoczna z zewnątrz, co nadaje obudowie oryginalny wygląd, przeznaczony dla miłośników moddingu zewnętrznego. Natomiast żadnych podstawowych praktycznych korzyści montaż pionowy nie daje.

Montaż bezśrubowy

Możliwość stosowania specjalnych zatrzasków (zamiast śrub) do mocowania urządzeń peryferyjnych w zatokach 3,5 cala i 5,25 cala, a także kart w gniazdach rozszerzeń. Ten montaż beznarzędziowy znacznie ułatwia instalację i wymianę elementów systemu.

Liczba zamontowanych wentylatorów

Im więcej wentylatorów jest przewidzianych w konstrukcji, przy pozostałych warunkach równych, tym intensywniejsze będzie chłodzenie i tym mocniejsze (a zatem „gorące”) wypełnienie można umieścić w obudowie bez ryzyka przegrzania. Do codziennych zadań wystarczy obudowa z jednym, dwoma lub trzema wentylatorami fabrycznymi. Jednocześnie przy porównywaniu warto wziąć pod uwagę nie tylko liczbę, ale także specyfikację wentylatorów (średnicę, prędkość). Zwracamy również uwagę, że w sprzedaży spotyka się obudowy bez wentylatorów z wolnymi miejscami na wentylatory, co pozwala w razie potrzeby rozbudować chłodzenie i poprawić jego wydajność.

Miejsca na wentylatory z tyłu

Liczba miejsc na wentylatory z tyłu obudowy, a także rozmiar wentylatorów, dla którego te miejsca są przeznaczone. Obecność samych wentylatorów w zestawie należy wyjaśniać osobno.

Uważa się, że im większy wentylator, tym bardziej zaawansowany on jest: duża średnica pozwala na wydajną pracę przy stosunkowo niskich obrotach, co zmniejsza hałas i zużycie energii. Wentylatory obudowy są dostępne w kilku standardowych średnicach; dla tylnego panelu rozmiar do 92 mm jest uważany za stosunkowo mały, 120 mm — za średni, 140 mm — za duży.

Najczęściej otwory do montażu wentylatorów są zaprojektowane dla jednego konkretnego rozmiaru, ale są też gniazda „wielorozmiarowe”, dla 2 - 3 opcji średnicy.

Miejsca na wentylatory z przodu

Liczba miejsc na wentylatory z przodu obudowy, a także rozmiar wentylatorów, dla którego te miejsca są przeznaczone. Obecność samych wentylatorów w zestawie należy wyjaśniać osobno.

Uważa się, że im większy wentylator, tym bardziej zaawansowany on jest: duża średnica pozwala na wydajną pracę przy stosunkowo niskich obrotach, co zmniejsza hałas i zużycie energii. Wentylatory obudowy są dostępne w kilku standardowych średnicach; dla panelu przedniego rozmiar do 92 mm uważany jest za stosunkowo mały, 120 mm — za średni, 140 mm — za duży, a w najbardziej zaawansowanych rozwiązaniach można zamontować wentylatory o średnicy 180 mm lub więcej.

Należy również pamiętać, że najczęściej otwory do montażu wentylatorów są zaprojektowane dla jednego konkretnego rozmiaru, ale istnieją również gniazda „wielorozmiarowe”, dla 2 — 3 opcji. Co więcej, opcje te mogą różnić się zarówno średnicą, jak i ilością: na przykład może się zapewniać instalacja dwóch wentylatorów o średnicy 140 mm lub trzech o średnicy 120 mm.

Miejsca na wentylatory z boku

Liczba miejsc na wentylatory po bokach obudowy, a także rozmiar wentylatorów, dla którego te miejsca są przeznaczone. Obecność samych wentylatorów w zestawie należy wyjaśniać osobno.

Uważa się, że im większy wentylator, tym bardziej zaawansowany on jest: duża średnica pozwala na wydajną pracę przy stosunkowo niskich obrotach, co zmniejsza hałas i zużycie energii. Wentylatory obudowy są dostępne w kilku standardowych średnicach, a miejsca dla nich mogą być zaprojektowane dla jednego lub kilku rozmiarów - na przykład 120/140 mm. Jednocześnie w niektórych modelach dostępna liczba miejsc zależy również od wybranego rozmiaru: na przykład są obudowy do gier, w których można zainstalować jeden wentylator o średnicy 180 mm z boku lub cztery wentylatory o średnicy 120 mm jednocześnie.

Miejsca na wentylatory na górze

Liczba miejsc na wentylatory na panelu górnym obudowy, a także rozmiar wentylatorów, dla którego te miejsca są przeznaczone. Obecność samych wentylatorów w zestawie należy wyjaśniać osobno.

Uważa się, że im większy wentylator, tym bardziej zaawansowany on jest: duża średnica pozwala na wydajną pracę przy stosunkowo niskich obrotach, co zmniejsza hałas i zużycie energii. Wentylatory obudowy są dostępne w kilku standardowych średnicach, a miejsca dla nich mogą być zaprojektowane dla jednego lub kilku rozmiarów - na przykład 120/140 mm. Jednocześnie w niektórych modelach dostępna liczba miejsc zależy również od wybranego rozmiaru: na przykład istnieją obudowy do gier, w których można zainstalować jeden wentylator o średnicy 180 mm na górze lub cztery wentylatory o średnicy 120 mm jednocześnie.

Miejsca na wentylatory na dole

Liczba miejsc na wentylatory na dole obudowy, a także rozmiar wentylatorów, dla którego te miejsca są przeznaczone. Obecność samych wentylatorów w zestawie należy wyjaśniać osobno.

Uważa się, że im większy wentylator, tym bardziej zaawansowany on jest: duża średnica pozwala na wydajną pracę przy stosunkowo niskich obrotach, co zmniejsza hałas i zużycie energii. Wentylatory obudowy są dostępne w kilku standardowych średnicach, a miejsca dla nich mogą być zaprojektowane dla jednego lub kilku rozmiarów - na przykład 120/140 mm. Jednocześnie w niektórych modelach liczba dostępnych miejsc zależy również od wybranego rozmiaru: na przykład można zainstalować jeden wentylator o średnicy 180 mm lub dwa o średnicy 140 mm.

Miejsca na wentylatory

Całkowita liczba miejsc do montażu wentylatorów przewidziana w konstrukcji obudowy.

Im wydajniejszy system, im więcej komponentów on zawiera, tym mocniejszego chłodzenia będzie on wymagał; dlatego liczba miejsc na wentylatory jest z reguły bezpośrednio związana z wielkością i przeznaczeniem obudowy. Należy również pamiętać, że przy tej samej liczbie miejsce do montażu poszczególnych wentylatorów może być różne - z tyłu, z boku, na górze itp.

Filtr przeciwkurzowy

Obecność w obudowie specjalnego filtra, który zapobiega przedostawaniu się kurzu do środka. Bez takiego filtra kurz osiada na elementach systemu; szczególnie podatne na to są radiatory, które tracą swoją skuteczność wskutek zapychania się kurzem. Jeśli masz filtr przeciwkurzowy, musisz czyścić nie wnętrze komputera, tylko sam element filtrujący, co jest znacznie prostsze i wygodniejsze.

Przegródki na filtry przeciwkurzowe mogą znajdować się na przednim panelu obudowy, z tyłu, na dole lub w bocznych ściankach. Istnieją również modele obudów z kilkoma miejscami do montażu filtrów przeciwkurzowych — wersja kombinowana zakłada obecność takich przegródek z kilku stron obudowy jednocześnie.

Dołączony hub

Hub dołączony do obudowy do podłączenia systemów sterowania wentylatorami i podświetleniem. W zależności od wykonania, dołączony hub można zamontować wewnątrz obudowy lub umieścić na jej panelu zewnętrznym. Często do huba dołączony jest pilot z nadajnikiem podczerwieni, który steruje wentylatorami i dekoracyjnym podświetleniem wnętrza obudowy.

Obsługa układów chłodzenia wodnego

Funkcja ta jest wskazywana dla obudów, które standardowo pozwalają na montaż systemów chłodzenia cieczą. Takie systemy są niezwykle wydajne, ale złożone i drogie, dlatego są stosowane głównie w komputerach o wysokiej wydajności, dla których tradycyjne chłodnice już nie wystarczają. Należy zauważyć, że teoretycznie chłodzenie cieczą można zainstalować w prawie każdej obudowie; jeśli jednak wsparcie dla takiego chłodzenia nie jest uwzględnione w konstrukcji, może to być bardzo trudne. Jeśli więc początkowo planujesz korzystać z systemu chłodzenia cieczą, warto wybrać obudowę, dla której obsługa tej funkcji jest bezpośrednio zadeklarowana.

Rozmiar układu chłodzenia wodnego z tyłu

Rozmiar miejsca na system chłodzenia wodą przewidzianego z tyłu obudowy.

W obudowach z obsługą systemu chłodzenia wodnego radiatory są instalowane w tych samych gniazdach, co tradycyjne wentylatory. Innymi słowy, w tym samym miejscu można zainstalować wentylator (wentylatory) lub radiator chłodzenia wodnego. Rozmiar miejsca pod system chłodzenia wodnego jest oznaczony jedną liczbą - długością (na większym boku); szerokość można określić na podstawie tych danych. Chodzi o to, że współczesne radiatory chłodzenia wodnego zwykle wykorzystują wentylatory o jednym ze standardowych rozmiarów - 120 mm lub 140 mm; a jeśli jest kilka takich wentylatorów, są one ustawione w rzędzie. W rezultacie długość radiatora jest wielokrotna, a szerokość jest równa jednej z tych liczb: na przykład 280 mm to 2x140 mm o szerokości 140 mm, a 360 mm to 3x120 mm o szerokości 120 mm.

Należy pamiętać, że w tym przypadku istotne są te same niuanse, co w przypadku chłodzenia powietrznego: większy wentylator zajmuje więcej miejsca i jest droższy, ale jest uważany za bardziej zaawansowany, ponieważ może działać skutecznie przy niższej prędkości - a to zmniejsza poziom hałasu i wibracji.

Rozmiar układu chłodzenia wodnego z przodu

Rozmiar miejsca na system chłodzenia wodą, przewidzianego na przedniej stronie obudowy.

W obudowach z obsługą systemu chłodzenia wodnego radiatory są instalowane w tych samych gniazdach, co tradycyjne wentylatory. Innymi słowy, w tym samym miejscu można zainstalować wentylator (wentylatory) lub radiator chłodzenia wodnego. Rozmiar miejsca pod system chłodzenia wodnego jest oznaczony jedną liczbą - długością (na większym boku); szerokość można określić na podstawie tych danych. Chodzi o to, że współczesne radiatory chłodzenia wodnego zwykle wykorzystują wentylatory o jednym ze standardowych rozmiarów - 120 mm lub 140 mm; a jeśli jest kilka takich wentylatorów, są one ustawione w rzędzie. W rezultacie długość radiatora jest wielokrotna, a szerokość jest równa jednej z tych liczb: na przykład 280 mm to 2x140 mm o szerokości 140 mm, a 360 mm to 3x120 mm o szerokości 120 mm. Ogólnie rzecz biorąc, rozmiar przedniego radiatora 240 mm lub mniej jest uważany za stosunkowo mały, 280 mm - za średni, 360 mm - za duży, a w niektórych modelach sięga 420 mm lub nawet więcej.

Należy pamiętać, że w tym przypadku istotne są te same niuanse, co w przypadku chłodzenia powietrznego: większy wentylator zajmuje więcej miejsca i jest droższy, ale jest uważany za bardziej zaawansowany, ponieważ może działać skutecznie przy niższej prędkości - a...to zmniejsza poziom hałasu i wibracji.

Rozmiar układu chłodzenia wodnego z boku

Rozmiar miejsca na system chłodzenia wodą, przewidzianego z boku obudowy.

W obudowach z obsługą systemu chłodzenia wodnego radiatory są instalowane w tych samych gniazdach, co tradycyjne wentylatory. Innymi słowy, w tym samym miejscu można zainstalować wentylator (wentylatory) lub radiator chłodzenia wodnego. Rozmiar miejsca pod system chłodzenia wodnego jest oznaczony jedną liczbą - długością (na większym boku); szerokość można określić na podstawie tych danych. Chodzi o to, że współczesne radiatory chłodzenia wodnego zwykle wykorzystują wentylatory o jednym ze standardowych rozmiarów - 120 mm lub 140 mm; a jeśli jest kilka takich wentylatorów, są one ustawione w rzędzie. W rezultacie długość grzejnika jest wielokrotnością, a szerokość jest równa jednej z tych liczb: na przykład minimalny rozmiar radiatora bocznego dla nowoczesnych obudów wynosi w rzeczywistości 240 mm, co odpowiada dwóm wentylatorom 120 mm umieszczonym obok siebie; rzeczywiste wymiary takiego gniazda to zatem 240x120 mm.

Należy pamiętać, że w tym przypadku istotne są te same niuanse, co w przypadku chłodzenia powietrznego: większy wentylator zajmuje więcej miejsca i jest droższy, ale jest uważany za bardziej zaawansowany, ponieważ może działać skutecznie przy niższej prędkości - a to zmniejsza poziom hałasu i wibracji.

Rozmiar układu chłodzenia wodnego na górze

Rozmiar miejsca na system chłodzenia wodą, przewidzianego na górnej stronie obudowy.

W obudowach z obsługą systemu chłodzenia wodnego radiatory są instalowane w tych samych gniazdach, co tradycyjne wentylatory. Innymi słowy, w tym samym miejscu można zainstalować wentylator (wentylatory) lub radiator chłodzenia wodnego. Rozmiar miejsca pod system chłodzenia wodnego jest oznaczony jedną liczbą - długością (na większym boku); szerokość można określić na podstawie tych danych. Chodzi o to, że współczesne radiatory chłodzenia wodnego zwykle wykorzystują wentylatory o jednym ze standardowych rozmiarów - 120 mm lub 140 mm; a jeśli jest kilka takich wentylatorów, są one ustawione w rzędzie. W rezultacie długość radiatora jest wielokrotna, a szerokość jest równa jednej z tych liczb: na przykład 280 mm to 2x140 mm o szerokości 140 mm, a 360 mm to 3x120 mm o szerokości 120 mm. Ogólnie rzecz biorąc, rozmiar górnego radiatora 240 mm lub mniej jest uważany za stosunkowo mały, 280 mm - za średni, 360 mm - za duży, a w niektórych modelach osiąga 420 mm lub nawet więcej.

Należy pamiętać, że w tym przypadku istotne są te same niuanse, co w przypadku chłodzenia powietrznego: większy wentylator zajmuje więcej miejsca i jest droższy, ale jest uważany za bardziej zaawansowany, ponieważ może działać skutecznie przy niższej prędkości - a to zm...niejsza poziom hałasu i wibracji.

Rozmiar układu chłodzenia wodnego na dole

Rozmiar miejsca na system chłodzenia wodą, przewidzianego na dolnej stronie obudowy.

W obudowach z obsługą systemu chłodzenia wodnego radiatory są instalowane w tych samych gniazdach, co tradycyjne wentylatory. Innymi słowy, w tym samym miejscu można zainstalować wentylator (wentylatory) lub radiator chłodzenia wodnego. Rozmiar miejsca pod system chłodzenia wodnego jest oznaczony jedną liczbą - długością (na większym boku); szerokość można określić na podstawie tych danych. Chodzi o to, że współczesne radiatory chłodzenia wodnego zwykle wykorzystują wentylatory o jednym ze standardowych rozmiarów - 120 mm lub 140 mm; a jeśli jest kilka takich wentylatorów, są one ustawione w rzędzie. W rezultacie długość radiatora jest wielokrotna, a szerokość jest równa jednej z tych liczb: na przykład 280 mm to 2x140 mm o szerokości 140 mm, a 360 mm to 3x120 mm o szerokości 120 mm.

Należy pamiętać, że w tym przypadku istotne są te same niuanse, co w przypadku chłodzenia powietrznego: większy wentylator zajmuje więcej miejsca i jest droższy, ale jest uważany za bardziej zaawansowany, ponieważ może działać skutecznie przy niższej prędkości - a to zmniejsza poziom hałasu i wibracji.

Miejsca na układ chłodzenia wodnego

Łączna liczba miejsc na systemy chłodzenia wodnego przewidziana w obudowie, czyli największa liczba radiatorów chłodzenia wodnego, którą można w niej zamontować. Takie radiatory są zwykle umieszczane po jednym na każdej stronie obudowy, dlatego najczęściej kilka radiatorów znajduje się po różnych stronach: na przykład 3 miejsca na system chłodzenia wodnego mogą znajdować się z tyłu, u góry i z przodu.

Oceniając liczbę miejsc (wszystkich typów) należy pamiętać, że wentylatory i radiatory chłodzenia wodnego zazwyczaj korzystają z tych samych miejsc.

Umiejscowienie

Umiejscowienie przedniego zestawu złączy, przewidzianego w obudowie. Złącza te mogą znajdować się na panelu przednim, na panelu bocznym lub na górze obudowy. Pierwsze dwa warianty występują we wszystkich formatach obudów (patrz wyżej), podczas gdy umiejscowienie na górze jest uważane za optymalne dla rozwiązań typu Tower, pierwotnie przeznaczonych do montażu pod biurkiem.

Sterowanie wentylatorami

Możliwość ręcznego sterowania prędkością wentylatorów zainstalowanych w obudowie.

Funkcja ta umożliwia dostosowanie trybu pracy wentylatorów do konkretnej sytuacji. Na przykład w chłodną pogodę przy niewielkim obciążeniu można zmniejszyć prędkość (lub nawet całkowicie wyłączyć wentylator), zmniejszając zużycie energii i poziom hałasu, a rozpoczynając wymagającą grę, zwiększyć ją. Należy również pamiętać, że istnieją narzędzia programowe, które pozwalają automatycznie dostosować prędkość wentylatorów; więc zamiast ręcznego sterowania można przypisać tę funkcję do automatyzacji.

System sterowania wentylatorami znajduje się zwykle w najbardziej zaawansowanych modelach obudów.

USB 2.0

Liczba natywnych złączy USB 2.0 zapewnionych w obudowie.

Złącza te znajdują się zwykle z przodu (więcej szczegółów w „Rozmieszczenie”). Są najwygodniejsze w przypadku urządzeń peryferyjnych, które trzeba często podłączać i odłączać - na przykład pendrive'ów (w przypadku urządzeń podłączonych na stałe wygodniej jest używać złączy płyty głównej znajdujących się na tylnym panelu). W szczególności USB 2.0 jest obecnie uważany za przestarzały: zapewnia prędkość przesyłania danych tylko 480 Mb/s i stosunkowo niski pobór mocy. Niemniej jednak w wielu przypadkach okazuje się to w zupełności wystarczające, a porty USB 2.0 są nadal wykorzystywane, także w dość zaawansowanych obudowach.

USB 3.2 gen1

Liczba natywnych złączy USB 3.2 Gen1 (wcześniej oznaczanych jako USB 3.1 Gen1 i USB 3.0) dostępnych w obudowie.

Złącza te znajdują się zwykle z przodu (więcej szczegółów w „Rozmieszczenie”). Są najwygodniejsze w przypadku urządzeń peryferyjnych, które trzeba często podłączać i odłączać - na przykład pendrive'ów (w przypadku urządzeń podłączonych na stałe wygodniej jest używać złączy płyty głównej znajdujących się na tylnym panelu). W szczególności standard USB 3.2 Gen1 zastąpił opisany powyżej USB 2.0, zapewnia 10 razy wyższą prędkość przesyłania danych (do 4,8 Gb/s) i wyższe zasilanie, a do takich złączy można również podłączyć peryferia w standardzie USB 2.0.

Warto pamiętać, że do normalnej pracy portów ich liczba i wersje muszą odpowiadać możliwościom płyty głównej.

USB 3.2 gen2

Liczba natywnych złączy USB 3.2 Gen2 (wcześniejsze nazwy to USB 3.1 Gen2 i USB 3.1) dostępnych w obudowie.

Złącza te znajdują się zwykle z przodu (szczegóły w „Rozmieszczenie”). Są najwygodniejsze w przypadku urządzeń peryferyjnych, które trzeba często podłączać i odłączać - na przykład pendrive'ów (w przypadku urządzeń podłączonych na stałe wygodniej jest używać złączy płyty głównej znajdujących się na tylnym panelu). USB 3.2 Gen2 ma prędkość przesyłania danych do 10 Gb/s i zwiększone zasilanie w porównaniu z wcześniejszymi wersjami USB.

Warto pamiętać, że do normalnej pracy portów ich liczba i wersje muszą odpowiadać możliwościom płyty głównej.

USB type C 3.2 gen1

Liczba natywnych złączy USB C 3.2 Gen1 (wcześniejsze nazwy to USB C 3.1 Gen1 i USB C 3.0) dostarczonych w obudowie.

Złącza takie zwykle znajdują się z przodu (więcej szczegółów w „Rozmieszczenie”). Są one najwygodniejsze w przypadku urządzeń peryferyjnych, które trzeba często podłączać i odłączać – np. pendrive'ów (w przypadku urządzeń podłączonych na stałe wygodniej używać złączy płyty głównej na tylnym panelu). W szczególności USB C to stosunkowo nowy typ złącza USB - mniejszy niż klasyczny USB i posiadający odwracalną konstrukcję. Stosowanie takiego złącza może być różne, w zależności od charakterystyki płyty głównej: mianowicie może służyć również jako port Thunderbolt v3, a interfejs połączeniowy 3.2 Gen1 charakteryzuje się przepustowością do 4,8 Gb/s.

USB type C 3.2 gen2

Liczba natywnych złączy USB C 3.2 Gen2 (wcześniejsze nazwy to USB C 3.1 Gen2 i USB C 3.1) przewidzianych w obudowie.

Złącza takie zwykle znajdują się z przodu (więcej szczegółów w „Rozmieszczenie”). Są one najwygodniejsze w przypadku urządzeń peryferyjnych, które trzeba często podłączać i odłączać – np. „pendrive'ów” (w przypadku urządzeń podłączonych na stałe wygodniej jest używać złączy płyty głównej na tylnym panelu). W szczególności USB C jest stosunkowo nowym typem złącza USB - mniejszym niż klasyczne USB i mającym odwracalną konstrukcję. Użytek takiego złącza może być różne, w zależności od charakterystyki płyty głównej: mianowicie może służyć również jako port Thunderbolt v3, a interfejs połączeniowy 3.2 Gen2 charakteryzuje się przepustowością do 10 Gb/s.

USB type C 3.2 gen2x2

Złącze typu USB C, obsługujące wersję podłączenia 3.2 gen2x2. Aby uzyskać szczegółowe informacje na temat samego złącza, patrz powyżej; a wersja 3.2 gen 2x2 (wcześniej znana jako USB 3.2) pozwala na osiągnięcie prędkości do 20 Gb/s – czyli dwa razy wyższych niż w oryginalnym 3.2 gen 2, stąd nazwa. Warto również zauważyć, że ta wersja jest realizowana wyłącznie przez złącza USB C i nie jest stosowana w portach wcześniejszych standardów.

Audio (mikrofon/słuchawki)

Obecność na zewnętrznym panelu obudowy gniazd audio do podłączenia mikrofonu i słuchawek. Z reguły są to osobne dwa złącza na standardową wtyczkę mini-Jack 3,5 mm.

Podłączanie urządzeń audio do złączy na przednim panelu jest znacznie wygodniejsze niż przeciąganie przewodów do tyłu obudowy, gdzie znajdują się własne wyjścia karty dźwiękowej.

eSATA

Liczba złączy eSATA na zewnętrznym panelu złączy obudowy.

eSATA (external SATA) to specjalistyczne złącze używane głównie do podłączania zewnętrznych dysków twardych. Jest wygodne z dwóch powodów: po pierwsze, ma dobrą prędkość przesyłania danych (do 2,4 Gb/s); po drugie, dysk podłączony przez eSATA nie zajmuje portów USB, które mogą być potrzebne dla innych urządzeń peryferyjnych. Jednocześnie ten interfejs jest dziś uważany za przestarzały, a nowe obudowy z nim nie są produkowane.

IEEE 1394

Liczba portów IEEE 1394 na zewnętrznym panelu złączy obudowy.

IEEE 1394 (znany również jako FireWire) to uniwersalny interfejs do podłączania zewnętrznych urządzeń peryferyjnych. Może być używany do różnych typów urządzeń, w szczególności zewnętrznych dysków twardych i niektórych modeli sprzętu wideo. Z wielu powodów nie zyskał popularności, a w naszych czasach jest powszechnie uważany za przestarzały i nie jest instalowany w nowych obudowach.

Czytnik kart pamięci

Obecność w obudowie własnego wbudowanego czytnika kart pamięci, co eliminuje konieczność kupowania go osobno. Taką obudowę warto kupić, jeśli planujesz dużo pracować z kartami pamięci, które są szeroko stosowane we współczesnej przenośnej elektronice - laptopach, tabletach, telefonach komórkowych, aparatach fotograficznych itp. Należy pamiętać, że dziś w elektronice stosuje się dość dużą liczbę różnych formatów kart pamięci i nie wszystkie są ze sobą kompatybilne. Dlatego przed zakupem warto osobno wyjaśnić listę formatów obsługiwanych przez czytnik kart pamięci.

Panel przedni

Siatkowy. Kratka siatkowa z przodu obudowy często dobrze wygląda i pozwala lepiej zaopatrywać wentylatory układu chłodzącego w powietrze z zewnątrz. Za perforowanym panelem często umieszcza się podświetlenie dekoracyjne, które poprawia wygląd obudowy.

- Wyciszony. Zaletami konkurencyjnymi obudów z wyciszonym panelem przednim jest lepsza izolacja akustyczna oraz skuteczna ochrona wewnętrznej przestrzeni komputera przed kurzem.

- Szklany. Zasłonę tajemnicy tego, co dzieje się wewnątrz jednostki systemowej komputera, lekko uchylają obudowy ze szklanym panelem przednim. Szkło hartowane jako materiał „elewacyjny” stosowane jest zarówno w postaci jednolitego okna, jak i w postaci szklanej kratki z podświetleniem RGB. A w połączeniu ze szklanym bocznym oknem zamienia obudowę w "akwarium".

Okno na panelu bocznym

Obecność przezroczystego okienka na bocznym panelu obudowy, pozwalającego zobaczyć „wypełnienie” bez otwierania obudowy. Nadaje obudowie stylowy wygląd, dodatkowo umożliwia zamontowanie wewnątrz systemu oświetlenia, co jest doceniane przez graczy na tle modeli obudów bez okienka.

Cechy dodatkowe

- Przednia pokrywa. Pokrywa na zawiasach, która całkowicie lub częściowo zakrywa panel przedni. Nadaje komputerowi estetyczny wygląd, ukrywając złącza i sloty zewnętrzne pod solidną, monotonną powierzchnią i działa jako zabezpieczenie przed dziećmi.

- Wyświetlacz na panelu przednim. Własny ekran, na którym mogą być wyświetlane różne dodatkowe informacje: aktualna częstotliwość procesora, dane dotyczące temperatury systemu, włączania i wyłączania trybów specjalnych itp.

- Zamek w panelu bocznym. Obecność specjalnego zamka na zdejmowanym bocznym panelu obudowy. Taki zamek zapobiega nieautoryzowanemu dostępowi do wewnętrznej objętości jednostki systemowej.

- Izolacja akustyczna. Obecność dodatkowej izolacji akustycznej w obudowie. Mogą to być albo specjalne maty wygłuszające od wewnątrz, albo inne, bardziej specyficzne rozwiązania (np. systemy tłumienia na „miejscach” dla poszczególnych elementów, które zmniejszają poziom drgań przenoszonych na obudowę). W każdym razie funkcja ta pomaga zredukować poziom hałasu generowanego przez system - czasami dość znacząco.

- Wyjmowany koszyk na dyski HDD. Obecność wyjmowanego koszyka na wewnętrzne urządzenia peryferyjne o formacie 3,5 cala (w zdecydowanej większości przypadków są to dyski twarde, stąd nazwa). Taki koszyk ułatwia mon...taż ze względu na to, że wyjąć go i zamontować dysk twardy w środku jest znacznie prościej niż montować go w niewyjmowanej zatoce wewnątrz obudowy, ten szczegół jest szczególnie przydatny, jeśli planujesz zainstalować kilka dysków twardych w systemie.

- Stacja dokująca do dysków twardych. Wbudowana stacja dokująca do szybkiego podłączania wewnętrznych dysków twardych. W rzeczywistości funkcja ta umożliwia podłączenie wewnętrznego dysku twardego jako zewnętrznego: złącze stacji dokującej znajduje się na zewnątrz obudowy i jest wyposażone w szybkozłączki ułatwiające podłączenie.

- Ukryte układanie kabli. Możliwość układania kabli od zasilacza z tyłu płyty głównej (jeśli weźmiesz za główną stronę, po której znajduje się procesor i sloty na karty rozszerzeń). W ten sposób przestrzeń po głównej stronie płyty głównej jest wolna od przewodów, co w szczególności ma pozytywny wpływ na wydajność chłodzenia.

- Okno do montażu układu chłodzenia procesora. Obecność osobnego okna w obudowie naprzeciwko łączników układu chłodzenia procesora. System mocowania znajduje się z tyłu płyty głównej i zwykle, aby go zmienić, należy zdjąć całą płytę główną; okno do montażu układu chłodzenia odciąża użytkownika od takiej potrzeby i znacznie ułatwia montaż i wymianę układu chłodzenia.
Filtry
Cena
oddo zł
Marki
Kolor obudowy
Przeznaczenie
Format
Standard płyty głównej
Ustawienie
Zasilacz
Funkcje i możliwości
Podświetlenie
Wygląd
Filtr przeciwkurzowy
Panel przedni
Liczba złączy USB A
Liczba złączy USB type C
Umiejscowienie przednich złączy
Materiał obudowy
Grubość stali
Umiejscowienie zasilacza
Standard zasilacza
Liczba zamontowanych wentylatorów
Liczba miejsc na wentylatory
Rok wprowadzenia na rynek
rozwiń
Montaż wentylatorów
Maks. rozmiar wentylatora do montażu z tyłu
Maks. rozmiar wentylatora do montażu z przodu
Maks. rozmiar radiatora do montażu z przodu
Maks. rozmiar radiatora do montażu na górze
Maks. wysokość chłodzenia CPU
Maks. długość karty graficznej
Liczba zatok wewnętrznych 3,5"
Liczba zatok wewnętrznych 2,5"
Liczba zatok 5,25"
Szerokość obudowy
Wysokość obudowy
Głębokość obudowy
Waga obudowy
Wyczyść parametry