Polska
Katalog   /   Sprzęt i narzędzia ogrodnicze   /   Urządzenia pomiarowe   /   Niwelatory laserowe i dalmierze
Niwelatory laserowe i dalmierze Bosch 

Niwelatory laserowe i dalmierze: specyfikacje, typy, rodzaje

Rodzaj

- Poziom optyczny. Początkowo niwelatory nazywano urządzeniami przeznaczonymi do określania nadmiaru jednego punktu na powierzchni (ziemi lub struktury) nad innym. Jednocześnie w budownictwie zakres takich narzędzi po pierwsze jest znacząco różny, a po drugie zależy od rodzaju. Niwelator optyczny można opisać jako rodzaj specjalistycznego teleskopu zamontowanego na obrotowym stojaku ze skalą do pomiaru kąta obrotu; inna skala, do sprawdzania zakresów poziomych i pomiarowych, znajduje się zwykle bezpośrednio w polu widzenia operatora. Kolejnym praktycznie niezbędnym elementem wyposażenia jest urządzenie do zapewnienia poziomego ustawienia lunety - mechanizm pozycjonowania z wbudowaną poziomicą. Niwelatory optyczne są uważane za bardzo uniwersalne urządzenia, mogą być stosowane w budownictwie, geodezji, architekturze krajobrazu, archeologii itp. Ich zalety to prostota, niezawodność, możliwość pracy bez zasilania oraz bezpieczeństwo ze względu na brak wiązek laserowych. Z drugiej strony większość tych urządzeń jest przeznaczona do dość dużych powierzchni i słabo nadaje się do pracy w małych przestrzeniach.

- Poziom lasera. W przeciwieństwie do opisanych powyżej optycznych, niwelatory laserowe są w rzeczywistości projektorami do budowania samolotów: za pomocą lasera rozproszonego przez specjalny pryzmat wyświetlają linię płaszczyzny na ścianie lub innej powierzchni. W związku z tym głównym celem tego ty...pu jest oznaczanie płaszczyzn - przede wszystkim poziomych lub pionowych, ale niektóre modele pozwalają również na ustawienie dowolnego kąta. Najprostsze niwelatory laserowe pracują na jednej płaszczyźnie, najbardziej zaawansowane potrafią wyświetlać trzy jednocześnie; innym specyficznym typem są urządzenia z rzutami w postaci punktów (więcej szczegółów w rozdziale „Rzuty punktowe”). Design będzie zwykle zawierał również poziomicę i/lub system samopoziomowania. Należy pamiętać, że większość urządzeń tego typu jest zaprojektowana na stosunkowo krótkie odległości - do 10 m bez odbiornika - i jest przeznaczona głównie do prac wewnętrznych; istnieją również dość mocne modele o zasięgu kilkudziesięciu metrów, ale są one znacznie rzadsze.

- Obrotowy poziom lasera. Opisana powyżej zmiana poziomu lasera, w której płaszczyzna jest „rysowana” nie na skutek rozproszenia wiązki laserowej w pryzmacie, ale na skutek gwałtownego obracania się źródła promieniowania laserowego – w efekcie ślad z wiązka łączy się dla oka w jedną ciągłą linię. Niwelatory obrotowe są zwykle profesjonalnymi instrumentami przeznaczonymi do użytku na dużych obszarach; zasięg pomiarów bez odbiornika w nich wynosi zwykle kilkadziesiąt metrów, a z odbiornikiem - do kilkuset.

- Dalmierz laserowy. Ten typ obejmuje urządzenia przeznaczone do pomiaru odległości za pomocą wiązki laserowej. W rzeczywistości są swego rodzaju elektronicznym substytutem ruletek i innych podobnych instrumentów. Jednocześnie znacznie wygodniej jest korzystać z dalmierza: zamiast ciągnąć taśmę, odkładać segmenty linijką itp. wystarczy skierować wiązkę w żądany punkt i ustalić uzyskaną wartość. Dodatkowo do pomiaru operator nie musi ruszać się z miejsca, co umożliwia łatwe określenie odległości nawet do niedostępnych obiektów - najważniejsze jest to, że obiekt ten znajduje się na linii wzroku i w zasięgu wzroku. urządzenie. Kolejną zaletą dalmierzy laserowych jest to, że mogą być wyposażone w wiele dodatkowych funkcji, takich jak automatyczne obliczanie powierzchni i objętości, sumowanie odległości, ustalanie minimum i maksimum itp. W rzeczywistości ich jedynymi wadami w porównaniu z tradycyjnymi przyrządami do pomiaru długości są wysoki koszt i zapotrzebowanie na energię. Większość urządzeń tego typu przypomina nieco piloty do sprzętu AGD i jest wycelowana w laserową „plamkę”, widoczną gołym okiem; jednak niektóre modele posiadają wizjer optyczny z naprowadzaniem na znak w okularze, co umożliwia użycie lasera w zakresie niewidzialnym (zwykle podczerwonym).

- Dalmierz ultradźwiękowy. Rodzaj dalmierza, który, jak sama nazwa wskazuje, wykorzystuje do działania promieniowanie ultradźwiękowe. Główne cechy zastosowania takich urządzeń są podobne do dalmierzy laserowych (patrz wyżej). Jednocześnie ultradźwięki mają pewne zalety w porównaniu z laserem. W szczególności może pracować nawet w warunkach gęstej mgły, pary, kurzu itp., gdzie wiązka światła jest bezsilna; ponadto wiele z tych urządzeń posiada dodatkowe funkcje, które nie są dostępne dla dalmierzy laserowych – np. pomiar temperatury w pomieszczeniu. Wśród wad dalmierzy ultradźwiękowych można zauważyć mniejszą dokładność, a także zależność wyników pomiarów od stanu powietrza (temperatury i wilgotności). Należy pamiętać, że takie urządzenia są zwykle wyposażone również w laserowe diody elektroluminescencyjne, ale w tym przypadku laser jest używany wyłącznie jako wyznacznik celu - znacznik świetlny wskazuje punkt, do którego odległość jest mierzona, a za pomiar odpowiada ultradźwięk samo.

Typ

Ogólne przeznaczenie urządzenia.

Parametr ten jest wskazany dla modeli o wyraźnej specjalizacji - są to głównie niwelatory laserowe, w tym obrotowe. Opcje mogą być następujące:

- Aby pokryć obszar 360 °. Pełen okrąg 360 ° z definicji obejmuje wszystkie niwelatory obrotowe (patrz Typ). Jednak tę specjalizację można znaleźć również w „konwencjonalnych” modelach laserowych. W takich urządzeniach pełne pokrycie 360° uzyskuje się innymi sposobami – zwykle poprzez posiadanie wielu nadajników, z których każdy obejmuje inny sektor.

- Tylko rzuty punktowe. Niwelatory z tą funkcją podczas pracy nie tworzą znaków w postaci linii i „rysują” tylko punkty. Jednocześnie w najprostszych modelach występuje tylko rzutowanie jednego punktu, ale urządzenia z kilkoma etykietami (do 5) są bardziej powszechne. W każdym razie takie urządzenia są przeznaczone do stosunkowo prostej pracy, w której nie ma potrzeby znakowania wzdłuż linii.

- Na podłogę. Niwelatory przeznaczone do pracy z podłogą - jastrychy, układanie powłok itp. Wspólną cechą takich urządzeń jest wystarczająco szeroka podstawa, która pozwala w rzeczywistości postawić urządzenie bezpośrednio na podłodze. Ale specyficzna konstrukcja i cechy działania tego typu poziomów mogą być różne. Tak więc dość popularne są urządzenia o charakterystycznym układzie - z dwoma pionowymi rzutami przecinającymi się pod kątem 90 ° (w niektórych modelach dostępne są jeszcze dwa rzuty, skierowane w przeciwnych kierunka...ch od głównych). Takie urządzenie może być używane nie tylko na podłodze, ale także na ścianach: jeśli mocno przymocujesz je podstawą do jednej lub drugiej powierzchni, utworzy na niej dwie wyraźnie prostopadłe linie. W przypadku podłóg jest to wygodne np. przy układaniu płytek.
Innym powszechnym rodzajem poziomowania podłogi są przyrządy przeznaczone do wykrywania nieprawidłowości. W tym celu stosuje się linię uformowaną na podłodze za pomocą rzutu pionowego. Podczas pracy niwelator umieszczony na podłodze i wyregulowany w poziomie obraca się wokół osi pionowej, a linia „skanuje” podłogę; kiedy uderza w półkę, staje się nierówny. Zauważ, że w najprostszych modelach taki „skaner” wykorzystuje tylko jedną projekcję, ale jest też wersja bardziej zaawansowana – linia tworzona przez dwie projekcje na raz. Kiedy taki wskaźnik trafi na nierówności podłogi, dzieli się na dwie oddzielne linie - jest to znacznie bardziej zauważalne niż odchylenie przy użyciu jednego rzutu.
Zwracamy również uwagę, że modele do urządzeń podłogowych są czasami określane również jako modele przeznaczone do wstępnego oznaczania ścian przed jastrychem - a mianowicie do rysowania ściśle poziomej linii wskazującej maksymalną wysokość wylewania. Jednak nie tylko specjalistyczne urządzenia poradzą sobie z takim zadaniem, ale także większość poziomów ogólnej specjalizacji - najważniejsze jest to, że potrafią tworzyć poziomą linię na niewielkiej wysokości od podłogi (około 3-4 cm).

- Do rur. Dość rzadkim rodzajem specjalistycznych poziomic laserowych są urządzenia do układania rurociągów. Wykorzystywane są w szczególności przy budowie instalacji wodno-kanalizacyjnych i deszczowych. Niwelatory rurkowe najczęściej mają charakterystyczny cylindryczny kształt, z jednej strony z uchwytem, a z drugiej laserem punktowym. Montowane są poziomo na specjalnych nogach (zestaw zwykle zawiera kilka zestawów takich nóżek, różniących się wysokością); projekt zwykle ma mechanizm samopoziomowania o dość rozbudowanych możliwościach; a wymaganą dokładność pomiaru zapewnia tarcza ze specjalnym oznaczeniem. Takie urządzenia pozwalają przynajmniej dokładnie układać linie poziome, a wiele z nich umożliwia również pracę z narożnikami.

Zasięg pracy

Zakres zastosowania, przy którym urządzenie pozostaje w pełni sprawne bez użycia dodatkowych odbiorników (patrz niżej); innymi słowy, promień jego działania bez urządzeń pomocniczych. Konkretne znaczenie tego parametru zależy od rodzaju instrumentu (patrz wyżej). Tak więc w przypadku niwelatorów optycznych zakresem pomiarowym jest największa odległość, z której operator może normalnie zobaczyć podziały standardowej łaty niwelacyjnej. W przypadku niwelatorów laserowych parametr ten określa odległość urządzenia od powierzchni, na którą rzutowany jest znak, przy której rzut ten będzie dobrze widoczny gołym okiem; a w dalmierzach mówimy o największej odległości, jaką można zmierzyć. Zazwyczaj zakres pomiarowy jest wskazany dla warunków idealnych - w szczególności przy braku zanieczyszczeń w powietrzu; w praktyce może to być mniejsze z powodu kurzu, mgły lub odwrotnie, jasne światło słoneczne „nachodzi” na znak. Jednocześnie pod względem tej cechy można porównywać instrumenty tego samego typu.

Należy pamiętać, że warto wybrać urządzenie według zasięgu, biorąc pod uwagę specyfikę zadań, które planuje się za jego pomocą rozwiązać: w końcu długi zakres pomiarowy zwykle znacząco wpływa na wymiary, wagę, zużycie energii i cenę, ale nie zawsze jest wymagane. Na przykład nie ma sensu szukać mocnego poziomu lasera na 30-40 m, jeśli potrzebujesz urządzenia do prac wykończeniowych w standardowych mieszkaniach.

W niektórych modelach można określić zakres, który przedstawi...a minimalny i maksymalny zakres pomiarowy. Ale w większości przypadków wskazana jest tylko wartość maksymalna.

Zasięg pracy (z odbiornikiem)

Najdłuższy zakres pomiarowy zapewniany przez niwelator laserowy lub dalmierz (patrz „Rodzaj”) w przypadku korzystania ze specjalnego odbiornika. Działanie takich odbiorników opiera się na zastosowaniu czułej fotokomórki, która umożliwia utrwalenie znaku z urządzenia nawet jeśli nie jest on już widoczny gołym okiem. Dzięki temu możliwe jest znaczne – kilkukrotne – rozszerzenie zasięgu urządzenia; funkcja ta może być również przydatna np. w jasnym świetle słonecznym.

Odbiornik może być dostarczony jako zestaw, ale najczęściej należy go dokupić osobno. Zazwyczaj jego wrażliwy obszar jest dość rozległy, a konstrukcja zapewnia specjalne wskaźniki (lampki, wyświetlacz itp.), które zaznaczają położenie znaku w tym obszarze - na przykład nad środkiem / poniżej środka / na poziomie. Dzięki temu można łatwo „złapać” znak i określić jego położenie z dokładnością do kilku milimetrów.

Dokładność

Dokładność jest opisana jako maksymalne odchylenie od prawdziwej wartości mierzonego parametru, jakie może dać urządzenie, jeśli przestrzegane są wszystkie zasady jego działania i odpowiednie pomiary. Zarówno w dalmierzach, jak i niwelatorach parametr ten jest zwykle wyznaczany na pewną odległość – np. 3 mm na 30 m; ale nawet dla tego samego producenta te odległości „kontrolne” mogą być różne. Dlatego w naszym katalogu dokładność wszystkich urządzeń jest przeliczana na 1 m odległości; przy takim rekordzie dla przykładu powyżej będzie to 3/30 = 0,1 mm/m. Ułatwia to porównywanie ze sobą różnych modeli.

Należy również powiedzieć, że znaczenie parametru „dokładność” dla różnych typów przyrządów pomiarowych (patrz „Rodzaj”) będzie różne. W przypadku niwelatorów optycznych opisano to w punkcie „SKP” powyżej. W przypadku laserów wszystkich typów dokładność to maksymalne odchylenie znaku od rzeczywistego poziomu (lub pionu, jeśli taka funkcja jest przewidziana), a dla poziomu można mówić zarówno o przesunięciu znaku w górę / w dół, jak i o jego obrót. W dalmierzach ta cecha opisuje maksymalną różnicę (zarówno w „plusie”, jak i „minusie”) między odczytami urządzenia a rzeczywistą odległością od obiektu.

W każdym razie im mniejszy błąd, tym lepiej; z drugiej strony dokładność znacząco wpływa na cenę urządzenia. Dlatego konieczne jest wybranie konkretnego modelu dla tego parametru, biorąc pod uwagę specyfikę planowanej pracy. Na przykład stosunkowo prosta naprawa w m...ieszkaniu prawdopodobnie nie będzie wymagała precyzyjnego narzędzia; a zalecenia dotyczące bardziej złożonych zadań można znaleźć w specjalistycznych źródłach, od zaleceń ekspertów po oficjalne instrukcje.

Dokładność

Błąd pomiaru niezależnie od zakresu. Główny parametr przy wyborze dalmierza laserowego.

Dokładność

Dokładność pomiaru zapewnia dalmierz ultradźwiękowy (patrz „Rodzaj”).

Parametr ten tradycyjnie wskazywany jest przez błąd – maksymalne odchylenie uzyskanych wyników od wartości rzeczywistych, które mogą powstać z powodu niedoskonałości urządzenia. W szczególności w dalmierzach ultradźwiękowych cechy pracy są takie, że rzeczywisty błąd zależy bezpośrednio od zmierzonej odległości; dlatego jest wskazany w procentach. W praktyce przełożenie tych liczb na wartości rzeczywiste jest dość proste: wystarczy pomnożyć odległość przez procentową dokładność i podzielić przez 100. Na przykład większość tych urządzeń ma obecnie dokładność 0,5%; jeśli wynik pomiaru wykazał, powiedzmy, 7 m, wówczas największe odchylenie wyniesie (7 * 0,5) / 100 = 0,035 m lub 35 mm. Liczby te są dość znaczące w porównaniu z dalmierzami laserowymi; z drugiej strony przypominamy, że modele ultradźwiękowe są używane na krótkich dystansach (do 20 m) i głównie w tych sytuacjach, gdy użycie urządzenia laserowego jest utrudnione lub w zasadzie nie jest wymagana duża dokładność.

Jeśli chodzi o konkretne liczby, zauważamy również, że najmniejsza dokładność (największy błąd) występująca w nowoczesnych urządzeniach ultradźwiękowych wynosi 1%, a modeli o dokładności wyższej niż 0,5% praktycznie nie można znaleźć. Jednak biorąc pod uwagę specyfikę aplikacji, różnica ta zwykle nie jest zasadnicza; nie ma też praktycznie żadnego wpływu na cenę.

Kąt samopoziomowania

Maksymalne odchylenie od pozycji poziomej, które urządzenie jest w stanie skorygować „własnymi środkami”.

Samopoziomowanie samo w sobie znacznie ułatwia instalację i wstępną kalibrację niwelatorów (patrz "Typ"), które często (a dla modeli optycznych - obowiązkowe) muszą być ustawione poziomo, aby działały. Dzięki tej funkcji wystarczy zamontować urządzenie mniej więcej równomiernie (w wielu modelach przewidziano do tego specjalne urządzenia, np. okrągłe poziomnice) – a dostrajanie w płaszczyźnie podłużnej i poprzecznej zostanie przeprowadzone automatycznie. A granice samopoziomowania są zwykle wskazane dla obu płaszczyzn; im wyższy wskaźnik ten, tym łatwiej jest zainstalować urządzenie, tym mniej wymaga od początkowego umieszczenia. W niektórych modelach wskaźnik ten ta może osiągnąć 6 - 8 °.

Czas poziomowania

Przybliżony czas, jaki zajmuje mechanizmowi samopoziomowania doprowadzenie poziomu do idealnie wypoziomowanej pozycji.

Aby uzyskać więcej informacji na temat takiego mechanizmu, zobacz Limity poziomu własnego. A rzeczywisty czas jego wyrównania zależy bezpośrednio od rzeczywistego odchylenia urządzenia od poziomu. Dlatego w charakterystyce z reguły podany jest maksymalny czas osiowania - czyli dla sytuacji, gdy w pozycji wyjściowej urządzenie jest pochylone pod maksymalnym kątem w obu osiach, wzdłużnej i poprzecznej. Ponieważ poziomnice są dalekie od zainstalowania w tej pozycji, w praktyce prędkość doprowadzenia do poziomu jest często wyższa niż deklarowana. Niemniej jednak sensowne jest ocenianie różnych modeli dokładnie według liczb podanych w charakterystyce - pozwalają one oszacować maksymalny czas, który trzeba będzie poświęcić na wyrównanie po następnym ruchu urządzenia. Jeśli chodzi o określone wskaźniki, mogą one wynosić od 1,5 - 2 s do 30 s.

Teoretycznie im krótszy czas wyrównania, tym lepiej, zwłaszcza jeśli czeka nas duża liczba pracy z częstymi ruchami z miejsca na miejsce. Jednak w praktyce porównując różne modele warto wziąć pod uwagę inne punkty. Po pierwsze, powtarzamy, że tempo wyrównywania w dużym stopniu zależy od limitów wyrównywania; w końcu im większe kąty odchylenia, tym więcej czasu zajmuje mechanizmowi powrót do poziomu. Tak więc, aby bezpośrednio porównać ze sobą pod względem szybkości samopoziomowania, to głównie te urządzen...ia, w których dopuszczalne kąty odchylenia są takie same lub nieznacznie się różnią. Po drugie, przy wyborze warto wziąć pod uwagę specyfikę proponowanej pracy. Jeśli więc urządzenie ma być często używane na bardzo nierównych powierzchniach, to na przykład model z czasem poziomowania 20 s i limitem samopoziomowania 6° będzie rozsądniejszym wyborem niż urządzenie z czasem 5 s i granice 2 °, ponieważ w drugim przypadku początkowa (ręczna) instalacja urządzenia zajmie dużo czasu. A dla mniej więcej równych płaszczyzn poziomych wręcz przeciwnie, szybsze urządzenie może być najlepszą opcją.

Prędkość obrotowa

Prędkość obrotowa emitera w obrotowym poziomie laserowym (patrz "Typ"). Jeśli urządzenie zapewnia kilka opcji prędkości, są one wskazywane linią ukośną (na przykład „0/300/600”), a jeśli regulacja przebiega płynnie, charakterystyka pokazuje cały zakres prędkości (na przykład „0 - 600").

Wraz ze wzrostem odległości od urządzenia do „celu” zwiększa się również długość drogi jaką musi pokonać znak laserowy z każdym obrotem. W związku z tym im dłuższy zakres roboczy, tym wyższa powinna być prędkość obrotowa; w przeciwnym razie linia widoczna dla oka będzie wyraźnie migotać, a nawet całkowicie zamieni się z linii w szybko biegnący punkt. Jednocześnie wzrost prędkości zwiększa zużycie energii i zmniejsza autonomię, a także prowadzi do dodatkowego zużycia mechanizmów urządzenia. Dlatego na krótkich dystansach nie jest konieczna duża prędkość obrotowa.

W świetle tego wszystkiego producenci zazwyczaj dobierają maksymalną prędkość obrotową biorąc pod uwagę zasięg urządzenia - tak, aby przy takim zasięgu laser skutecznie tworzył ślad i jednocześnie nie obracał się zbyt szybko. Dlatego przy wyborze konkretnego modelu zazwyczaj nie trzeba zwracać uwagi na maksymalne obroty. Warto jednak przyjrzeć się bliżej możliwościom wyboru prędkości obrotowej. Im więcej takich możliwości, tym dokładniej można dostosować poziom do konkretnych warunków pracy. Jednocześnie zaawansowane funkcje sterowania nieuchronnie wpływają na cenę, ale wpływ ten jest często znikomy w porównaniu z c...ałkowitym kosztem samego urządzenia.

Powiększenie

Stopień powiększenia zapewniany przez obiektyw niwelatora optycznego lub dalmierza laserowego (jeśli funkcja ta jest dostępna, patrz „Rodzaj”, aby uzyskać więcej informacji). W każdym razie im większe powiększenie, tym ogólniej zasięg urządzenia (patrz wyżej) i tym wygodniej jest pracować z nim na odległość. W przypadku niwelatorów optycznych parametr ten jest również jednym z kryteriów określających przydatność przyrządu do określonej klasy pomiarów; szczegółowe wymagania dotyczące wielości z reguły są wskazane w specjalistycznych instrukcjach.

Należy mieć na uwadze, że zwiększenie powiększenia, przy innych warunkach bez zmian, prowadzi do zawężenia kąta pola widzenia; w pewnym stopniu można to skompensować zwiększając średnicę obiektywu (patrz również poniżej), ale duże soczewki znacznie zwiększają całkowity koszt poziomu. Dlatego przy wyborze należy postępować od optymalnej równowagi między tymi cechami.

Średnica obiektywu

Średnica obiektywu niwelatora optycznego (patrz „Rodzaj”). Współczynnik apertury zależy przede wszystkim od tego parametru - ilości światła przepuszczanego przez układ optyczny. Im większa średnica obiektywu, tym wyższa ta liczba oraz jaśniejszy i wyraźniejszy obraz widoczny dla operatora, co jest szczególnie ważne przy słabym oświetleniu (przy pochmurnej pogodzie, o zmierzchu itp.). Dodatkowo duży obiektyw pozwala na większe pole widzenia; więcej szczegółów na str. „Współczynnik powiększenia”.

Dokładność podwójnej niwelacji

Skrót SKP oznacza „błąd średniokwadratowy”. Jest to główny wskaźnik, który określa dokładność niwelatora optycznego (patrz „Rodzaj”): opisuje średnią wartość błędu (różnica między odczytami przyrządu a rzeczywistą wysokością), którą niwelator wytwarza podczas pracy. Zwyczajowo UPC oznacza się w milimetrach na kilometr podwójnego skoku: na przykład wartość 2,5 mm oznacza, że przy przejściu do obiektu w odległości 1 km od pozycji wyjściowej i z powrotem, całkowite odchylenie uzyskanych wyników od prawdziwej różnicy wysokości wyniesie 2,5 mm. Kolejność liczb jest dokładnie taka, że nawet najprostsze współczesne niwelatory mają SKP na poziomie zaledwie kilku milimetrów na kilometr. Jednocześnie dla różnych klas prac geodezyjnych dopuszczalne niwelatory błędu średniokwadratowego również będą różne; szczegółowe wymagania dla nich są opisane w dokumentach regulacyjnych, w szczególności instrukcjach.

Jednocześnie warto wyjaśnić, że w tym przypadku mówimy o tzw. błąd instrumentalny, wynikający jedynie z niedoskonałości konstrukcji samego urządzenia. Rzeczywisty błąd pomiaru może być znacznie wyższy, ponieważ o jego występowaniu decyduje wiele innych czynników: dokładność poziomego ustawienia urządzenia, konstrukcja pręta niwelacyjnego, zniekształcenia z przepływów powietrza o różnych temperaturach ("zamglenie"), od zabrudzenia na soczewce itp. Dlatego dla wielu poziomów optycznych należy wskazać również taki parametr jak dokładność (patrz niżej) - czyli rzeczywisty błąd, uwz...ględniający wszystkie istotne czynniki (oczywiście z zastrzeżeniem metodologii pomiaru).

Min. ogniskowa

Najkrótsza ogniskowa niwelatora optycznego lub cyfrowego (patrz „Rodzaj”).

W tym przypadku ogniskowa oznacza najmniejszą odległość od łaty niwelacyjnej lub innego obiektu, przy której urządzenie może na niej wyraźnie zogniskować. W większości nowoczesnych poziomów odległość ta nie przekracza 1,5 m, a w niektórych modelach wynosi łącznie około 20 cm, więc z praktycznego punktu widzenia jest to bardziej punkt odniesienia niż naprawdę istotny parametr - w końcu takie urządzenia są używane na znacznie większe odległości. Jednocześnie, przy podobnych podstawowych parametrach, krótsza ogniskowa z reguły oznacza bardziej zaawansowaną i wysokiej jakości optykę.

Kąt widzenia

Szerokość pola widzenia zapewnianego przez obiektyw niwelatora optycznego lub cyfrowego (patrz „Rodzaj”).

Zgodnie z ogólnymi prawami optyki wzrost współczynnika powiększenia prowadzi do zmniejszenia kąta widzenia; jednak modele z tym samym powiększeniem mogą różnić się tym wskaźnikiem. Jednocześnie z jednej strony im większą przestrzeń widzi operator, tym wygodniej pracuje się z urządzeniem, zwłaszcza przy celowaniu w łatę niwelacyjną lub inny konkretny cel. Z drugiej strony różnica między poszczególnymi opcjami jest niewielka i w praktyce rzadko okazuje się zasadnicza. Typowy przykład: większość 24-krotnych poziomów ma kąt widzenia od 1°20' do 1°30', co w odległości 100 m odpowiada średnicy widocznej przestrzeni od około 2,32 m do 2,61 m. Jak widać, różnica średnic wynosi tylko około 29 cm, a przy krótszych odległościach roboczych zmniejsza się proporcjonalnie.

Zatem z tego punktu widzenia kąt widzenia jest bardziej punktem odniesienia niż naprawdę istotnym parametrem podczas pracy. Jednocześnie warto zauważyć, że szersze pole widzenia jest często oznaką bardziej zaawansowanego instrumentu, który ma w szczególności większy cel – a ta cecha daje dość praktyczne zalety (więcej szczegółów w rozdziale „Średnica obiektywu ").

Zakres pracy kompensatora

Zakres pracy kompensatora zainstalowanego w poziomie.

Kompensator jest urządzeniem do niwelowania niewielkich odchyleń urządzenia zainstalowanego w pozycji roboczej. Funkcja ta jest szczególnie ważna dla modeli optycznych i cyfrowych, w których jest głównie używana. Nie należy jej mylić z samopoziomowaniem: ta ostatnia jest używana podczas początkowej instalacji poziomu, a kompensator amortyzuje niewielkie wstrząsy, które pojawiają się już podczas pracy (typowym przykładem są drgania gruntu z pobliskiego ciężkiego sprzętu budowlanego). A zasięg jest wskazywany przez maksymalne odchylenie od poziomu, które taki mechanizm może wyeliminować.

Wartości te w nowoczesnych poziomach są niewielkie, liczone są w minutach łuku i zwykle wahają się od 12-15' do 30'. Co więcej, im szerszy zakres kompensatora, tym jest on skuteczniejszy, tym silniejsze wstrząsy i wibracje może wygładzić; z drugiej strony wzrost wydajności nieuchronnie wpływa na cenę. Należy również pamiętać, że złącza kompensacyjne mogą różnić się typem przepustnicy (patrz poniżej).

Tłumienie kompensatora

Typ przepustnicy, w którą wyposażony jest kompensator poziomu.

Przypomnijmy, że kompensatory służą do ochrony poziomo zainstalowanego urządzenia przed małymi wstrząsami i wibracjami (na przykład na niestabilnych glebach lub w pobliżu ciężkiego sprzętu budowlanego. A amortyzator jest „sercem” kompensatora - mechanizmem bezpośrednio odpowiedzialnym za poziomowanie; podstawą takiego mechanizmu jest wahadło, które znajduje się pionowo przy stacjonarnym położeniu urządzenia i zaczyna się kołysać przy odchylaniu od poziomu.Aby przywrócić poziom do pozycji roboczej, należy to wahadło zatrzymać, różne typy amortyzatorów różnią się tylko sposobem hamowania, opcje tutaj mogą wyglądać następująco:

- Magnetyczny. Hamowanie odbywa się za pomocą pola z magnesu trwałego. Za każdym razem, gdy wahadło mija taki magnes, wahadło zwalnia, aż do całkowitego zatrzymania.

- Powietrze. Bardziej słuszne byłoby nazwanie tej metody „ciężarem”: do działania kompensatora stosuje się masywną wagę, zamocowaną w dolnej części wahadła.

Obie opisane zasady same w sobie nie różnią się zasadniczo ani pod względem dokładności, ani skuteczności. Uważa się, że dla poziomów o wysokiej precyzji lepiej nadaje się przepustnica powietrza, dla mniej dokładnych urządzeń (z tzw. dokładnością techniczną) - magnetyczna; jednak w praktyce wszystko zależy od ogólnej jakości wykonania konkretnego urządzenia.

Liczba punktów odniesienia

Punkt odniesienia dla pomiaru — jest to miejsce, od którego urządzenie zaczyna mierzyć odległość. U większości dalmierzy takich punktów dwie: tylne i przednie krawędzie. Są modele, które posiadają otwór do mocowania na statywie, więc to dla nich istnieje trzeci punkt odniesienia na środku gwintowanego otworu. Rzadziej spotykane są modele z uchylną obudową/nóżka w pobliżu tylnej krawędzi, tak więc jeszcze wzrastająca liczba punktów pomiaru do 4-ech. I nie obejdzie się bez urządzeń z jednym punktem odniesienia.

Temperatura robocza

Zakres temperatur, w których gwarantowana jest praca urządzenia przez wystarczająco długi czas bez awarii, awarii i przekroczenia błędu pomiarowego określonego w charakterystyce. Należy mieć na uwadze, że mówimy przede wszystkim o temperaturze obudowy urządzenia, a to zależy nie tylko od temperatury otoczenia – np. narzędzie pozostawione na słońcu może się przegrzać nawet przy dość chłodnej pogodzie.

Generalnie warto zwrócić uwagę na parametr ten, gdy szukasz modelu do pracy na zewnątrz, w nieogrzewanych pomieszczeniach i innych miejscach o warunkach znacząco odbiegających od warunków pokojowych; w pierwszym przypadku warto również zadbać o ochronę przed kurzem i wilgocią (patrz „Klasa ochrony”). Z drugiej strony, nawet stosunkowo proste i „krótkowzroczne” niwelatory/dalmierze zazwyczaj dobrze znoszą ciepło i zimno.

Gwint statywu

Rozmiar gwintu służącego do montażu niwelatora/dalmierza na statywie (jeśli jest). Ta opcja może być przydatna, jeśli masz już statyw pomiarowy, którego chcesz używać z instrumentem.

Najpopularniejsze opcje w nowoczesnych urządzeniach to 1/4 "i 5/8". Należy zaznaczyć, że 1/4” to standardowy rozmiar dla sprzętu fotograficznego – odpowiednio, poziomice z takim gwintem można zamontować nawet na zwykłych statywach fotograficznych.

Wyłącznik czasowy

Możliwość automatycznego wyłączenia urządzenia po określonym czasie. Funkcja ta znajduje się w tych typach przyrządów pomiarowych, które wymagają zasilania do działania - przede wszystkim mówimy o dalmierzach laserowych, ale ta lista może również zawierać niwelatory (patrz "Typ"), zarówno laserowe, jak i optyczne z dodatkowymi modułami cyfrowymi . ... Głównym celem automatycznego wyłączania jest oszczędzanie energii: w końcu prawie wszystkie takie urządzenia mają autonomiczne źródła zasilania (patrz „Moc”), których ładunek nie jest nieskończony. Zapominając o wyłączeniu urządzenia, możesz napotkać nieprzyjemną sytuację: baterie są rozładowane, ale nie ma pod ręką nowych; automatyczne wyłączanie zapobiega takim sytuacjom i generalnie wydłuża czas pracy bez wymiany akumulatora lub ładowania akumulatora. Ponadto funkcja ta jest przydatna z punktu widzenia bezpieczeństwa: automatyczne wyłączenie lasera zmniejsza prawdopodobieństwo przypadkowego trafienia jego wiązki w oczy osoby znajdującej się w pobliżu (w tym zapominalskiego operatora).

W niektórych modelach automatyczne wyłączanie jest wyzwalane dla całej elektroniki, w innych można najpierw wyłączyć laser (jako najbardziej energochłonną i niebezpieczną część), a dopiero po pewnym czasie - wszystkie inne obwody elektroniczne .

Automatyczne wyłączanie

Czas, po którym urządzenie całkowicie się wyłączy, jeśli użytkownik nie wykona żadnej czynności.

Zobacz powyżej, aby uzyskać więcej informacji na temat automatycznego wyłączania; a jego czas jest dwojaki. Z jednej strony, jeśli ten czas jest krótki, to czas bezczynności urządzenia będzie minimalny, co pomaga oszczędzać energię. Z drugiej strony zbyt częste automatyczne wyłączanie (po którym następuje włączenie do pracy) jest również niepożądane - zwiększa zużycie komponentów i zmniejsza zasoby, a nie zawsze jest wygodne dla użytkownika. Dlatego producenci wybierają czas zachowując równowagę między tymi momentami, a także ogólną klasą i przeznaczeniem urządzenia. Tak więc w niektórych dalmierzach wskaźnik ten nie sięga nawet minuty, chociaż w większości takich urządzeń mieści się w zakresie od 3 do 8 minut; aw niektórych urządzeniach profesjonalnych (głównie poziomach) czas automatycznego wyłączenia może wynosić 30 minut lub więcej (do 3 godzin).

Automatyczne wyłączanie lasera

nie podejmuje żadnych działań.

Parametr ten dotyczy przede wszystkim dalmierzy laserowych. Wynika to z faktu, że w tego typu urządzeniach laser jest jednym z najbardziej „żarłocznych” (pod względem energochłonności) elementów, podczas gdy wykorzystywany jest tylko bezpośrednio w procesie pomiarowym. Dlatego, wraz z automatycznym wyłączeniem samego urządzenia (patrz wyżej), takie urządzenia mogą również zapewniać automatyczne wyłączenie lasera - głównie jako funkcja "bezpieczna" w przypadku, gdy użytkownik sam zapomni wyłączyć emiter. Czas takiego automatycznego wyłączenia zwykle nie przekracza minuty - półtorej, chociaż są wyjątki.

Dioda lasera

Długość fali promieniowania emitowanego przez diodę LED poziomu lub dalmierza; parametr ten określa przede wszystkim kolor wiązki laserowej. Najbardziej rozpowszechnione we współczesnych modelach są diody LED o długości fali około 635 nm - stosunkowo niskim kosztem zapewniają jaskrawoczerwone promieniowanie, co daje dobrą widzialną projekcję. Są też zielone lasery, zwykle o długości 532 nm – ślady po nich są jeszcze lepiej widoczne, ale takie diody są dość drogie i rzadko się je stosuje. A promieniowanie o długości fali dłuższej niż 780 nm należy do widma podczerwieni. Taki laser jest niewidoczny gołym okiem i słabo nadaje się do niwelacji, ale można go zastosować w dalmierzach - oczywiście, jeśli masz wizjer (więcej szczegółów w dziale "Typ").

Kolor wiązki

Kolor wiązki laserowej emitowanej przez instrument.

W naszych czasach najbardziej popularne są czerwone lasery: są stosunkowo niedrogie, a jednocześnie dość skuteczne i funkcjonalne, a także dość zauważalne na większości powierzchni. Z kolei zielone lasery są lepiej widoczne dla ludzkiego oka (przy tej samej mocy emitera); są jednak znacznie droższe od czerwonych, zużywają więcej energii i mają krótszą żywotność, a zatem są znacznie rzadsze.

W osobnych urządzeniach naraz można znaleźć dwa rodzaje laserów - zarówno czerwony, jak i zielony. Z reguły są to niwelatory z kilkoma rzutami, gdzie kolor zielony służy do rysowania płaszczyzn, a czerwony do rzutów punktowych.

Klasa lasera

Klasa lasera użytego w niwelatorze lub dalmierzu (patrz „Rodzaj”). Parametr ten określa przede wszystkim bezpieczeństwo stosowanego promieniowania oraz środki ostrożności podczas pracy z urządzeniem. Klasyfikacja laserów w różnych krajach ma swoje własne cechy, ale wspólne cechy są charakterystyczne dla wszystkich opcji. Obecnie istnieją 4 główne klasy, ich główne cechy, które są istotne dla niwelatorów / dalmierzy, są następujące:

1 - Bardzo niska moc, laser jest bezpieczny nawet przy długotrwałej ekspozycji na siatkówkę. Z drugiej strony takie emitery słabo nadają się do przyrządów pomiarowych i praktycznie nie są w nich stosowane.
2 - Niska moc, uszkodzenie oczu jest możliwe tylko przy bezpośredniej ekspozycji na laser przez długi czas (chociaż nadal nie warto kierować wiązki w oczy). Najpopularniejsza klasa w nowoczesnych niwelatorach i dalmierzach poziomu podstawowego i średniego, a także może być stosowana w profesjonalnych - takie lasery stanowią dobry kompromis między zasięgiem a bezpieczeństwem.
3 - Wysoka moc, która może uszkodzić oko, gdy jest wystawiona zarówno na bezpośrednie, jak i odbite promieniowanie zwierciadlane. Należy pamiętać, że do tej klasy mogą należeć lasery, które są bezpieczne dla krótkotrwałej ekspozycji na siatkówkę, ale dla gwarancji warto założyć, że wszystkie „trojaczki”, w jakiejkolwiek modyfikacji, stanowią poważne zagrożenie. Takie nadajniki są instalowane w profesjonalnych niwelatorach i dalmierzach „dalekiego zasięgu”;...zasady bezpieczeństwa podczas pracy z nimi obejmują co najmniej używanie okularów ochronnych.
4 - Niezwykle wysoka moc, niespotykana w instrumentach geodezyjnych.

Przypominamy, że środki ostrożności podczas pracy z dowolnym laserem są zwykle szczegółowo opisane w instrukcji narzędzia, a przed rozpoczęciem pracy należy się z nimi zapoznać.

Liczba płaszczyzn pionowych

Liczba rzutów pionowych wydawanych przez poziom lasera podczas pracy.

Większość nowoczesnych poziomów przeznaczona jest na ściśle określone stanowisko pracy; odpowiednio rzut pionowy nazywany jest rzutem rysowanym od góry do dołu w stosunku do standardowego położenia urządzenia. Jeśli takich płaszczyzn jest kilka, poziom można wykorzystać na dwie, a nawet trzy ściany jednocześnie - przydaje się to np. do jednoczesnej pracy kilku osób. Jednocześnie istnieją urządzenia przenośne, które mogą być używane w różnych pozycjach; dla nich główna płaszczyzna robocza nazywana jest pionową, chociaż podczas pracy może być umieszczona zarówno poziomo, jak i pod kątem, w zależności od konkretnych zadań. Należy również pamiętać, że rzut pionowy może również generować linię poziomą - na przykład podczas instalowania poziomu na podłodze.

Należy pamiętać, że liczba rzutów jest obliczana nie przez płaszczyzny geometryczne, ale przez poszczególne elementy laserowe, z których każdy odpowiada za własny „obszar roboczy”. Na przykład, jeśli poziom ma dwa pionowe elementy znajdujące się na przeciwległych końcach i skierowane w różnych kierunkach, są one liczone jako dwa rzuty, nawet jeśli te rzuty leżą w tej samej płaszczyźnie.

Pionowy kąt rozwarcia

Kąt pochylenia w płaszczyźnie pionowej, zapewniany przez nadajnik poziomu. Jeśli takich emiterów jest kilka (na przykład po obu stronach obudowy) - parametr ten jest podawany dla każdego z nich osobno.

Kąt odchylenia jest w rzeczywistości kątem odchylenia, to znaczy szerokością sektora wychwyconego przez emiter podczas tworzenia linii. Im szerszy jest ten kąt, tym wygodniejsze jest działanie urządzenia, tym mniejsze prawdopodobieństwo, że urządzenie będzie musiało być przesuwane w górę i w dół, aby narysować linię. Z drugiej strony większy kąt zamiatania (w tym samym zakresie) wymaga większej mocy - a to odpowiednio wpływa na koszty i zużycie energii.

Liczba płaszczyzn poziomych

Liczba rzutów poziomych, które poziom lasera może wytworzyć podczas pracy. Podobnie jak w przypadku linii pionowych (patrz wyżej), parametr ten nie opisuje liczby płaszczyzn geometrycznych, ale liczbę poszczególnych elementów roboczych do rzutowania linii poziomych. W tym przypadku rzutowana płaszczyzna jest zwykle jedną i można do niej zapewnić kilka elementów w celu rozszerzenia sektora objętego urządzeniem. Na przykład tradycyjna niwelator laserowy (patrz „Typ”) z 4 projekcjami poziomymi może być w stanie pokryć pełne koło 360° - jak niwelator obrotowy (patrz ibid.), ale przy znacznie niższych kosztach. Oczywiście nie ma potrzeby mówić o pełnoprawnym zastępstwie, tk. moc i zasięg takich urządzeń również nie są zbyt duże; ale do pracy w pomieszczeniach o odległości kilku metrów, gdzie jednocześnie ważne jest szerokie pokrycie, często preferowany jest model konwencjonalny z kilkoma rzutami niż model obrotowy. Same niwelatory obrotowe z definicji mają jeden rzut niwelatory.

Poziomy kąt rozwarcia

Poziomy kąt nachylenia zapewniany przez przetwornik poziomu. Jeśli jest kilka emiterów, tutaj podany jest ich całkowity kąt pokrycia; typowym przykładem takich urządzeń są pełne modele 360°, niezwiązane z rotacyjnymi.

Właściwie wszystkie urządzenia obrotowe z definicji zapewniają pokrycie 360°. Dlatego warto zwrócić uwagę na parametr ten w tych przypadkach, jeśli chodzi o bardziej tradycyjne niwelatory laserowe. I tutaj należy mieć na uwadze, że większy kąt zasięgu z jednej strony może zapewnić dodatkową wygodę, z drugiej zaś podnosi cenę i pobór mocy urządzenia. Dlatego przy wyborze warto kierować się realnymi potrzebami; szczegółowe zalecenia w tej sprawie można znaleźć w dedykowanych źródłach.

Liczba płaszczyzn punktowych

Liczba pojedynczych punktów rzutowanych przez narzędzie laserowe - dalmierz lub poziomica, patrz "Typ" - podczas pracy. W pierwszym przypadku standardowo zapewniany jest rzut jednopunktowy - więcej do pomiaru odległości po prostu nie jest wymagane. Na poziomach może być kilka punktów, a niektóre modele w ogóle nie mają rzutów płaskich i działają tylko z punktami. Ten format może nie być tak wygodny jak wyświetlanie linii; jednocześnie, przy tej samej mocy lasera, plamki świecą jaśniej i są lepiej widoczne, zwłaszcza z dużych odległości. Ponadto istnieją pewne rodzaje prac, dla których jest to rzut punktowy, który jest uważany za optymalny - na przykład układanie kanału ściekowego, wyznaczanie lokalizacji dwóch otworów w przeciwległych ścianach itp.

Zenit

Zenit w tym przypadku nazywany jest rzutem punktowym skierowanym pionowo w górę.

Sam taki rzut może być przydatny, na przykład, jeśli trzeba zrobić dziury na kilku piętrach, znajdujących się ściśle jeden nad drugim. Wystarczy wycelować laserem "przeciwlotniczym" w otwór znajdujący się bezpośrednio nad nim - a ślad z wiązki przechodzącej przez ten otwór wskaże punkt na otwór na kolejne zakładki. A jeśli urządzenie ma również funkcję nadir (patrz poniżej), połączenie tych funkcji będzie bardzo wygodne do jednoczesnego oznaczania podłogi i sufitu - pod regałami, przegrodami itp.: znaki od zenitu i nadiru znajdują się ściśle jeden nad drugim.

Nadir

Nadir w tym przypadku nazywany jest rzutem punktowym skierowanym pionowo w dół.

Sam taki występ można wykorzystać w szczególności do wykonywania otworów w jednej pionowej linii w sufitach znajdujących się na różnych poziomach. Wystarczy zrobić jeden z otworów, ustawić poziom nad nim - a wiązka lasera biegnąca pionowo w dół wskaże położenie kolejnego otworu. A w urządzeniach, które również mają funkcję zenitu (patrz wyżej), znaki z projekcji zenitu i nadiru znajdują się ściśle jeden nad drugim. Jest to bardzo wygodne podczas jednoczesnego oznaczania podłogi i sufitu dla regałów, ścianek działowych itp.

Ręczne ustawienie pryzmatu

Możliwość zmiany trybu pracy niwelatora laserowego poprzez zmianę położenia pryzmatu rozpraszającego wiązkę lasera. Dokładniej, funkcja ta umożliwia przełączanie tego samego emitera w różnych trybach: pionowym, poziomym, krzyżowym, punktowym. Konkretny zestaw tych trybów może się różnić w zależności od modelu, ale w każdym przypadku warto pamiętać: ręczna regulacja pryzmatu jest bardzo słabo połączona z mechanizmami o wysokiej precyzji. Dlatego funkcję tę można znaleźć tylko w najprostszych modelach, przeznaczonych wyłącznie do prostych codziennych zadań i nie zapewniających szczególnej dokładności.

Blokada kompensatora

Możliwość wyłączenia kompensatora zainstalowanego w poziomie. Mówiąc dokładniej, mówimy o możliwości wyłączenia systemu samopoziomowania (przypomnijmy, służy on do automatycznego ustawienia urządzenia w pozycji poziomej podczas początkowej instalacji).

Zablokowanie kompensatora może być przydatne w dwóch przypadkach. Pierwszy to transport: kompensatory są dość delikatnymi mechanizmami, a po włączeniu nie wytrzymują wstrząsów i wstrząsów, jakim może być poddane urządzenie podczas przemieszczania się z miejsca na miejsce. Drugi przypadek to instalacja urządzenia pod kątem, gdy doprowadzenie go do poziomu jest po prostu zbędne.

Stopka do naroży

Cecha konstrukcyjna, spotykana w dalmierzach - przeważnie laserowych.

Wspornik pozycyjny to specjalny ogranicznik na obudowie urządzenia, zaprojektowany dla wygody podczas pomiaru odległości w niektórych sytuacjach. Wspornik ten jest jednym z punktów odniesienia – czyli ustawiając odpowiednie ustawienia można mierzyć odległość nie od przedniej lub tylnej krawędzi obudowy, lecz od wspornika. Przydaje się to w szczególności przy pomiarach odległości od różnych krawędzi - otworów drzwiowych i okiennych, krawędzi blatów i krawężników itp.: w takich sytuacjach wygodnie może być oparcie wspornika na punkcie początkowym pomiaru.

Wyświetlacz

Własny ekran na korpusie urządzenia.

Wszystkie wyświetlacze służą do wyświetlania różnych dodatkowych informacji, co sprawia, że zarządzanie jest wygodniejsze i bardziej intuicyjne; ale konkretna funkcjonalność i cechy ekranu mogą się różnić w zależności od typu:

— Czarno-biały bez podświetlenia. Najprostszy i najtańszy rodzaj wyświetlacza: czarno-biała matryca LCD bez własnego podświetlenia. Mimo ogólnej prostoty, takie ekrany mogą mieć dość rozbudowane możliwości: technicznie mogą wyświetlać zarówno dane związane z pracą urządzenia (np. wyniki pomiarów dalmierza), jak i inne opcjonalnie, w tym dość specyficzne. W rzeczywistości jedyną rzeczą, do której wyświetlacze czarno-białe nie nadają się, jest wyświetlanie obrazu z aparatu cyfrowego. W praktyce funkcjonalność wyświetlacza dobierana jest zgodnie z możliwościami konkretnego urządzenia. Jeśli chodzi o brak podświetlenia, ta cecha utrudnia użytkowanie w warunkach słabego oświetlenia, ale obniża cenę i pobór mocy. W dodatku pod słońcem lub innym jasnym oświetleniem na zaawansowanych podświetlanych ekranach obraz może „blaknąć”, natomiast na najprostszym czarno-białym bez podświetlenia wręcz przeciwnie, staje się jeszcze wyraźniejszy.

- Czarno-biały z podświetleniem. Czarno-białe ekrany wyposażone w systemy podświetlenia. Należy pamiętać, że w tej kategorii znajdują się właściwie dwa rodzaje wyświetlaczy: tradycyjne czarno-białe matryce LCD formatu „czarny...obraz na białym tle”, uzupełnione zewnętrznym systemem oświetlenia, a także jednokolorowe ekrany „jasnego obrazu”. na czarnym tle”, gdzie samo światło może świecić. Tak czy inaczej, takie wyświetlacze mogą być używane bez ograniczeń przy słabym oświetleniu, ale minusem tego jest zwiększony pobór mocy - szczególnie w modelach, w których podświetlenie jest cały czas włączone.

- Kolorowe. Funkcjonalność wyświetlaczy kolorowych może być różna – od najprostszych ekranów LCD, które potrafią wyświetlać tylko kilka podstawowych kolorów (np. wyróżnić na ekranie najważniejsze cyfry innym kolorem), aż po matryce pełnokolorowe (jak te używane, na przykład w laptopach). Pierwsza odmiana jest nieco wygodniejsza i bardziej przejrzysta niż opisane powyżej wyświetlacze czarno-białe, kosztuje trochę więcej, ale nie ma innych różnic. Z kolei najbardziej zaawansowane kolorowe ekrany potrafią nawet wyświetlić obraz z aparatu cyfrowego – i tak naprawdę są używane głównie w urządzeniach wyposażonych w takie aparaty.

- Dotykać. Najbardziej zaawansowany typ wyświetlaczy. Takie ekrany są prawie zawsze wykonane w kolorze i wyposażone w podświetlenie, a sterowanie dotykowe pozwala wykorzystać je również do sterowania urządzeniem (podobnie jak to ma miejsce w smartfonach i tabletach). Pod względem sterowania ekrany dotykowe są wygodniejsze i bardziej wizualne niż tradycyjne panele z przyciskami, przełącznikami itp.; są znacznie lepiej przystosowane do pracy z dużą ilością funkcji, a także zapewniają dodatkowe funkcje, które nie są dostępne przy tradycyjnym sterowaniu. Z drugiej strony taki sprzęt nie jest tani, a po prostu nie ma sensu używać go w stosunkowo prostych i niedrogich urządzeniach – do takich modeli w zupełności wystarczą tańsze wyświetlacze, nawet te najprostsze czarno-białe. Dlatego obecność ekranu dotykowego jest prawie gwarantowana jako znak wysokiej klasy urządzenia z mnóstwem funkcji.

Kamera celownicza

Aparat cyfrowy wbudowany w korpus urządzenia.

Należy zauważyć, że taki sprzęt z definicji jest dostarczany w postaci cyfrowej, więc w przypadku takich urządzeń obecność kamery nie jest konkretnie określona. A większość urządzeń, dla których wskazana jest funkcja ta, dotyczy dalmierzy laserowych: obraz z kamery jest wyświetlany bezpośrednio na ekranie, a cały system służy jako wizjer do nakierowywania wiązki na żądany obiekt. Jest to szczególnie przydatne na znacznych odległościach (od 50 m i więcej), przy których trudno jest dostrzec znak laserowy i kontrolować jego położenie. Właściwie potężne dalmierze „dalekiego zasięgu” wyposażone są w aparaty – w prostszych urządzeniach nie ma potrzeby używania takiego sprzętu, zwłaszcza że znacząco wpływa to na cenę.

Wbudowana miara zwijana

Tradycyjna mechaniczna miarka, wbudowana w korpus urządzenia.

Funkcja ta jest najbardziej popularna wśród dalmierzy laserowych: taśma miernicza jest również przeznaczona do pomiaru odległości, jej zastosowanie pozwala oszczędzać energię baterii, a w niektórych przypadkach elastyczna taśma metalowa jest nawet wygodniejsza niż laser. Zauważ, że takie urządzenia zwykle nie wyglądają jak dalmierze z dodatkowym wyposażeniem, a raczej jak tradycyjne taśmy miernicze, uzupełnione laserem.

Również taki sprzęt można znaleźć w osobnych poziomicach laserowych - w większości prostych i niedrogich modeli przeznaczonych wyłącznie do użytku domowego.

Libella

Poziomica oparta na kapsułce bąbelkowej (lub kilku takich kapsułach) wbudowanej w obudowę narzędzia.

Takie urządzenie pozwala kontrolować pozycję urządzenia — mianowicie sprawdzić, czy jest ustawione poziomo; jednak w niektórych modelach zapewnia się również poziomice dla pozycji pionowej, a czasem nawet do nachylania pod kątem 45° lub pod innym kątem. Natomiast konkretny cel poziomicy bąbelkowej może być różny, w zależności od typu i ogólnego poziomu urządzenia. Najpopularniejszą opcją jest wstępna, zgrubna instalacja niwelatora laserowego w poziomie: początkowa regulacja odbywa się ręcznie za pomocą niwelatora, a następnie uruchamiany jest wbudowany mechanizm samopoziomowania. W prostych i niedrogich niwelatorach domowych, gdzie nie jest wymagana duża dokładność, komora bąbelkowa może być nawet jedynym sposobem na ustawienie w żądanej pozycji; niektóre z tych urządzeń mogą być również używane jako pełnowartościowe poziomice budowlane.

Wykrywanie metali / przewodów

Wbudowany wykrywacz, który pozwala za pomocą urządzenia wyszukiwać niewidoczne dla oka części metalowe lub przewody - na przykład armaturę lub kable elektryczne ukryte w ścianie.

Należy pamiętać, że funkcjonalność takiego detektora należy określić osobno: jeśli przewody pod napięciem mogą zostać wykryte przez prawie wszystkie urządzenia z tą funkcją, to możliwość wyszukiwania obiektów metalowych nie zawsze jest dostępna. Warto też zauważyć, że w praktyce taki sprzęt nie jest tak często wymagany, ale jest drogi. Dlatego w naszych czasach tylko kilka modeli ma możliwość wykrywania metalu/okablowania (choć są wśród nich niwelatory i dalmierze).

Bluetooth

Obecność modułu Bluetooth pozwala przeprowadzone pomiary nadawać na podłączone urządzenie. W ten sposób można zrobić urządzenie maksymalnie kompaktowy, a odczytywać dane bezpośrednio z telefonu. Tak i w epoce zaawansowanych technologii i możliwości zarządzania telefonem wszelkich urządzeniem, takie rozwiązanie wydaje się całkiem uzasadnione.

Wi-Fi

Technologia bezprzewodowa. Technicznie jest bardziej zaawansowany niż Bluetooth: może służyć zarówno do bezpośredniej komunikacji między urządzeniami, jak i do łączenia się z sieciami komputerowymi (w tym z Internetem), a zasięg komunikacji nawet w najprostszych standardach sięga 100 m. Jednocześnie w niwelatory i dalmierze Wi-Fi jest używane niezwykle rzadko - dosłownie w pojedynczych modelach. Konkretne możliwości takiej komunikacji należy ponownie określić osobno: teoretycznie mogą się one różnić od bezpośredniego połączenia z laptopem, tabletem itp. po zdalny dostęp i sterowanie przez Internet, ale w praktyce funkcjonalność dobierana jest zgodnie z specjalizacja i ogólny poziom konkretnego urządzenia.

RS-232

To port COM. Złącze serwisowe do wymiany danych z komputerem lub laptopem, a także niektóre specjalistyczne urządzenia. Występuje w niektórych modelach dalmierzy laserowych i niwelatorów cyfrowych; poprzez port COM można przesyłać dane pomiarowe, zarządzać ustawieniami, aw drugim przypadku nawet transmitować obraz z kamery niwelatora.

Zwróć uwagę, że w czystej postaci złącza RS-232 są niezwykle rzadkie we współczesnych komputerach – istnieją jednak przejściówki z tego interfejsu na tradycyjne USB.

Funkcje dalmierza

- Pomiar powierzchni / objętości. Wbudowane narzędzie programowe do pomiaru powierzchni i/lub kubatury pomieszczeń lub dużych obiektów. Funkcja ta działa w następujący sposób: użytkownik musi jedynie zmierzyć długość, szerokość, a dla objętości - także wysokość obiektu, po czym dalmierz samodzielnie pomnoży uzyskane dane i wyświetli wynik końcowy.

- Pomiary pośrednie (twierdzenie Pitagorasa). Funkcja pozwalająca określić długość jednego z boków trójkąta prostokątnego przez jego pozostałe dwa boki. Jednym z jego najpopularniejszych zastosowań jest pomiar wysokości budynków, ścian, filarów i innych obiektów bez konieczności podchodzenia do nich. Aby to zrobić, umieść dalmierz na poziomie gruntu i zmierz dwie odległości od tego punktu: do stopy obiektu, poziomo (jedna z nóg) i do góry obiektu (hipoprostokąt). Na podstawie twierdzenia Pitagorasa urządzenie automatycznie obliczy długość drugiej nogi - czyli w tym przypadku zmierzoną wysokość.

- Pomiar kąta nachylenia. Funkcja, która zmienia dalmierz na zaawansowany poziom. Gdy jest włączony, wystarczy przyłożyć urządzenie bokiem do pochyłej powierzchni lub innego podobnego obiektu – a wbudowany czujnik automatycznie określi kąt nachylenia, wyświetlając go na wyświetlaczu.

- Pomiar wysokości. Specjalny tryb pomiaru wysokości różnych obiektów. Zauważ, że w wielu urządzeniach funkcja ta jest faktycznie wykonywana przez pomiary pośrednie zgodnie z twierdzeniem Pitagorasa (patrz wyżej). Dlatego możliwość p...omiaru wysokości jest wskazana głównie w tych modelach, które mają bardziej zaawansowane możliwości takich pomiarów. Typowym przykładem jest rozszerzona wersja twierdzenia Pitagorasa, stosowana, gdy dalmierz jest zamontowany na statywie na pewnej wysokości od ziemi. Przy takim ustawieniu, aby zmierzyć wysokość, należy wykonać trzy pomiary: odległość do stopy obiektu (dalmierz będzie przechylony w dół), do obiektu w poziomie oraz do jego góry. Na podstawie uzyskanych danych urządzenie zbuduje dwa trójkąty, wykona niezbędne obliczenia i poda ostateczną wartość wysokości.

- Pomiar trapezu. Funkcja pozwalająca określić długość czwartego boku oraz całkowitą powierzchnię figury na trzech bokach prostokątnego trapezu. Służy głównie do obliczania powierzchni ścian i elewacji w domach o dachach skośnych, dwuspadowych i innych podobnych. Jeśli górna część ściany jest pochylona w jedną stronę - aby określić powierzchnię wystarczy zmierzyć długość podstawy i wysokość dwóch boków przylegających do krawędzi dachu. Jeżeli górna część ściany przylega do dachu dwuspadowego, ścianę należy podzielić na dwa trapezy i zmierzyć w ten sam sposób; Podobną metodę można zastosować w przypadku dachów o bardziej skomplikowanym kształcie, dzięki czemu górna strona ściany wygląda jak linia przerywana.

Stopień ochrony IP

Poziom ochrony przed szkodliwymi wpływami (przede wszystkim - wnikanie ciał obcych), który zapewnia korpus niwelatora / dalmierza zgodnie ze standardem IP. Norma ta opisuje dwie odrębne cechy - ochronę przed ciałami stałymi i przed wodą. Są one oznaczone odpowiednio pierwszą i drugą cyfrą po indeksie IP; im większe liczby, tym wyższy stopień ochrony.

Biorąc pod uwagę, że niwelatory i dalmierze zwykle muszą pracować na placach budowy, gdzie jest dużo pyłu, minimalny poziom ochrony przed ciałami stałymi dla takich narzędzi wynosi piąty. Pozwala na przedostanie się do środka pewnej ilości kurzu, ale w taki sposób, aby nie wpływało to na działanie urządzenia. Maksymalny poziom odporności na kurz to 6, zakłada pełną ochronę przed cząstkami stałymi.

Druga cecha, wodoodporność, w niwelatorach i dalmierzach jest zwykle wskazywana począwszy od poziomu 4. Oficjalnie zapewnia ochronę „przed rozpryskami spadającymi z dowolnego kierunku”, w praktyce oznacza to możliwość stosowania w średnim deszczu przy silnym wietrze – nie jest nie na miejscu, jeśli narzędzie ma być używane na otwartych przestrzeniach. Poziom 5 umożliwia pracę podczas burzy i ulewy, urządzenie szóstej klasy wytrzymuje uderzenie falą, siódmej - krótkotrwałe zanurzenie pod wodą do 1 m, a ósmej - nawet długi pobyt pod wodą. Jednak w przypadku zwykłego narzędzia budowlanego zwykle nie jest wymagana zbyt duża wodoodporność.

Właściwie najpopularniejszą opcją we współczesnych narzędziach budowlanyc...h jest klasa IP54: wystarcza nawet do pracy przy złej pogodzie, podczas gdy takie przypadki są stosunkowo niedrogie. Są też modele bezpieczniejsze, ale rzadziej.

Warto również zauważyć, że sama ochrona przed kurzem i wilgocią na określonym poziomie jest zwykle zapewniona nawet w urządzeniach, które nie mają oznaczenia IP. Brak tego indeksu niekoniecznie oznacza, że nie ma ochrony - oznacza to po prostu, że sprawa nie przeszła oficjalnej certyfikacji IP. Ale jeśli potrzebujesz dodatkowej gwarancji niezawodności, nadal warto zwracać uwagę na certyfikowane opcje.

Zasilanie

Typ i liczba ogniw zasilających, stosowanych w niwelatorze/dalmierzu. Wszystkie elementy o standardowych rozmiarach ( AA, AAA, C, D, 9 V) produkowane są w dwóch wariantach - baterie jednorazowe i akumulatorki. Daje to użytkownikowi wybór: albo dokupywać za każdym razem stosunkowo niedrogie baterie, albo zainwestować jeden raz w baterię z ładowarką, a następnie po prostu ładować baterię w razie potrzeby. Oryginalne baterie są z definicji przeznaczone do wielokrotnego ładowania, podobnie jak akumulatory 18650.

Konkretne rodzaje zasilania dziś mogą wyglądać następująco:
— AA. Standardowe ogniwo, potocznie nazywane „paluszek”. Moc tych ogniw jest średnia, można je stosować zarówno w prostych urządzeniach, jak i dość zaawansowanych oraz „dalekiego zasięgu”. Takie zasilanie jest wygodne ze względu na to, że baterie AA są bardzo powszechne i sprzedawane prawie wszędzie - dzięki temu ich wyszukanie i wymiana zwykle nie stanowi problemu.
— AAA. Mniejsza wersja opisanego powyżej ogniwa AA - prawie identyczna w kształcie, jednak cieńsza i krótsza. Takie ogniwa, zwane „paluszkami mini” mają dość małą pojemność i moc, są jednak niezbędne w urządzeniach przenośnych, gdzie kompaktowość ma kluczowe znaczenie. Również są dość powszechn...e.
- C. Cylindryczne ogniwo, w postaci charakterystycznej, dość grubej „beczułki” - przy długości 50 mm średnica wynosi 26 mm. Ze względu na większą pojemność i moc, niż u AA, lepiej nadaje się do zaawansowanych modeli z laserami „dalekiego zasięgu”, jednak jest rzadziej używane i ogólnie mniej powszechne.
- D. Największy i najbardziej pojemny typ standardowych baterii, spotykany we współczesnych niwelatorach i dalmierzach: grubość i średnica wynoszą odpowiednio 62 i 34 mm. Głównym obszarem zastosowania baterii D są wydajne urządzenia profesjonalne.
- Akumulator. W danym przypadku chodzi o zasilanie narzędzia z oryginalnej baterii, która nie jest zaliczana do żadnego standardowego rozmiaru. Ten wariant jest dobry, ponieważ kompletne baterie są początkowo tworzone dla konkretnego modelu niwelatora/dalmierza i są od razu dostarczane w zestawie (a w niektórych modelach są na ogół niewymienne); ponadto ich właściwości mogą znacznie przewyższać standardowe ogniwa o podobnym rozmiarze i wadze. Z drugiej strony takie zasilanie jest mniej wygodne przy wyczerpaniu baterii w niewłaściwym momencie: jedynym sposobem na naprawę sytuacji jest zwykle doładowanie, a zajmuje to dość dużo czasu (podczas gdy standardowe baterie można wymienić w zaledwie minutę ).
- 18650. Nazwa tych baterii pochodzi od ich wymiarów: 18,6x65,2 mm, cylindryczne, zewnętrznie przypominają nieco powiększone ogniwa AA, jednak mają napięcie robocze około 3,7 V i większą pojemność. Ponadto wszystkie ogniwa typu 18650 z definicji nie są bateriami jednorazowymi, lecz akumulatorami (typu litowo-jonowego).

— Bateria 9 V. 9-woltowe baterie o charakterystycznym prostokątnym kształcie, z parą styków na jednym z końców. Ze względu na wysokie napięcie robocze zapewniają dobrą moc i rzeczywistą pojemność, więc do działania zwykle wystarcza jedna taka bateria.

— LR44. Miniaturowe baterie typu pastylka o średnicy 11,6 mm i grubości 5,4 mm. Zwykle instalowane w zestawach po 3 sztuki i stosowane w kompaktowych niwelatorach laserowych małej mocy, dla których małe wymiary są ważniejsze niż moc i pojemność. Należy pamiętać, że oznaczenie LR44 odnosi się w szczególności do stosunkowo niedrogich baterii alkalicznych; droższe i bardziej zaawansowane srebrno-cynkowe źródła zasilania oznaczane są jako SR44 lub 357.

— 23A12V. Rzadka odmiana: baterie cylindryczne (długość 29 mm, średnica 10 mm) o napięciu nominalnym 12 V.

Zasilanie sieciowe

Możliwość zasilania urządzenia z domowego gniazdka elektrycznego, czyli zwykłego gniazdka.

Nowoczesne niwelatory i dalmierze domyślnie zasilane są bateriami lub akumulatorami. Przy wszystkich swoich zaletach (przede wszystkim swoboda poruszania się i niezależność od gniazdek), ten sposób zasilania ma również poważne wady: ograniczony czas pracy, a także konieczność dokupienia dodatkowych akumulatorów lub szukania źródła zasilania do ładowania akumulator (a procedura ładowania zresztą trwa dość długo). W związku z tym niektóre nowoczesne urządzenia zapewniają dodatkowo możliwość podłączenia do gniazdka i pracy z sieci. To przede wszystkim oszczędza energię baterii; a wiele modeli jest również zdolnych do ładowania akumulatorów w procesie (wbudowanych lub nawet wymiennych).

Należy pamiętać, że możliwość pracy z sieci znajduje się głównie wśród tradycyjnych niwelatorów laserowych i to na różnych poziomach - od kompaktowych modeli domowych po dość mocny sprzęt profesjonalny.

Złącze

Rodzaj złącza umożliwiającego synchronizację ze smartfonem i komputerem lub ładowanie baterii urządzenia.

Wiele współczesnych niwelatorów i dalmierzy jest wyposażonych w porty USB. To właśnie rodzaj tego interfejsu jest podawany w tym punkcie, odmiany natomiast mogą wyglądać następująco:

— Micro USB. Dość stare, lecz wciąż bardzo popularne złącze do przenośnych gadżetów. Nieco mniejsze od USB C, ma asymetryczny kształt i jednostronną konstrukcję.

— USB C. Najnowszy typ miniaturowych złączy USB. Porty tego typu są wygodne przede wszystkim ze względu na symetryczną konstrukcję, która umożliwia włożenie wtyczki w obie strony (w przeciwieństwie do wcześniejszych standardów, w tym microUSB). Ponadto dzięki USB C łatwiej jest wdrożyć wiele zaawansowanych funkcji, w szczególności technologie szybkiego ładowania; jednak wszystko zależy od konkretnego modelu urządzenia.

Zwracamy również uwagę, że oba typy złączy są standardami uniwersalnymi, produkuje się pod nich ogromną liczbę ładowarek, kabli i adapterów. Obecność portu USB zapewnia bardzo szerokie możliwości synchronizacji niwelatora i dalmierza z komputerem lub gadżetami mobilnymi. Z reguły, aby skorzystać z możliwości takiego połączenia, należy zainstalować specjalne oprogramowanie ze strony producenta. Konkretne możliwości połączenia mogą się różnić. W szczególności nierzadko spotyka się funkcję pobierania danych zapisanych pomiarów na PC.

...Jednakże USB jest używane do ładowania baterii w niwelatorze/dalmierzu: w tym celu można użyć przejściówki do gniazdka lub zapalniczki samochodowej, przenośnego powerbanku, złącza USB komputera lub laptopa, ten sam port w przedłużaczu czy nawet gniazdku itp. Dochodzi do tego, że niektóre urządzenia z interfejsem USB są w całości dostarczane bez ładowarki, z tylko jednym kablem: zakłada się, że znalezienie złącza zasilania dla takiego kabla nie jest problematyczne.

Czas pracy

Czas pracy urządzenia na jednym ładowaniu baterii.

Należy zauważyć, że liczby te są dość przybliżone, ponieważ czas pracy jest mierzony dla pewnych standardowych warunków (zwykle dla ciągłej pracy przy mocy znamionowej). A ponieważ w praktyce warunki mogą się znacznie różnić, czas pracy może być zauważalnie krótszy lub dłuższy od deklarowanego. Dodatkowo, jeśli urządzenie używa wymiennych baterii (AAA, AA itp.) to autonomia zależeć będzie również od jakości konkretnych baterii/akumulatorów. Niemniej jednak, na podstawie danych podanych w specyfikacji, całkiem możliwe jest oszacowanie możliwości określonych modeli i porównanie ich ze sobą: różnica w deklarowanym czasie pracy z reguły odpowiada proporcjonalnie różnicy w praktycznej autonomii przy tych samych warunkach.

Zauważmy również, że czas pracy jest podawany głównie dla niwelatorów; w dalmierzach częściej używany jest inny parametr - liczba pomiarów (patrz poniżej).

Liczba pomiarów

Parametr charakteryzujący wydajność pracy urządzenia na jednym ładowaniu akumulatora. Pokazuje, ile pomiarów można dokonać bez ładowania.

Platforma akumulatorowa

Nazwa platformy baterii obsługiwanej przez urządzenie. Pojedyncza platforma akumulatorowa służy do łączenia różnych elektronarzędzi tej samej marki w jedną linię (śrubokręt, szlifierka, piła tarczowa itp.). Urządzenia na tej samej platformie korzystają z wymiennych akumulatorów i ładowarek. Dzięki temu np. nie ma konieczności dobierania akumulatora do każdego modelu elektronarzędzia z osobna, ponieważ zakupiony jako zapasowy akumulator może być używany w różnych elektronarzędziach, w zależności od sytuacji lub w zależności od potrzeb. Akumulatory tej samej platformy różnią się głównie od siebie, z wyjątkiem pojemności.

Model akumulatora

Model standardowego akumulatora pozwala bardziej szczegółowo poznać jego cechy, a także zrozumieć, do jakich urządzeń on pasuje i jaki należy kupić w przypadku wymiany z powodu awarii lub w razie potrzeby dokupić drugi akumulator.

Kompatybilne akumulatory

Modele akumulatorów, z którymi jest kompatybilny odpowiedni typ strugarki elektrycznej (patrz „Zasilanie”). Informacje te będą przydatne w przypadkach, gdy akumulator (akumulatory) trzeba dokupić osobno – na przykład, gdy narzędzie nie jest w ogóle wyposażone w akumulator, jeśli trzeba uzupełnić oryginalne wyposażenie, lub jeśli dotychczasowy akumulator jest wyczerpany porządku.

Wyposażenie

- Posiadacz. Oprawy do mocowania niwelatora / dalmierza na różnych powierzchniach. Takie urządzenie różni się od statywu przede wszystkim niewielkimi rozmiarami - w granicach kilkudziesięciu centymetrów. Z drugiej strony większość uchwytów pozwala na montaż urządzenia nie tylko na powierzchniach poziomych, ale także pionowych - na przykład ścianach (a niektóre są wyłącznie naścienne). W każdym razie funkcja ta znacznie rozszerza możliwości instalacji.

- Odbiornik. promieniowanie laserowe dostarczane wraz z urządzeniem. To urządzenie jest zwykle wyposażone w niwelatory laserowe, rzadziej w dalmierze, a przyrządy optyczne w ogóle go nie potrzebują. Głównym przeznaczeniem odbiornika są sytuacje, w których znak laserowy nie jest widoczny gołym okiem – na przykład z dużej odległości lub w jasnym świetle. Możliwości jego zastosowania zostały szczegółowo opisane w rozdziale „Zakres pomiarowy (z odbiornikiem)” powyżej.

- Statyw. Większość nowoczesnych instrumentów ma standardowe gwinty i może być używana z dowolnym odpowiednim mocowaniem do statywu. Z drugiej strony, kompletny statyw jest najczęściej specjalnie projektowany pod konkretny model i jest dla niego optymalny pod względem ogólnych cech. Ponadto ta opcja konfiguracji pozwala uniknąć konieczności samodzielnego znajdowania i kupowania odpowiedniego statywu.

- Etui / pokrowiec.... Główną funkcją tych urządzeń jest ochrona urządzenia przed wstrząsami, zarysowaniami, brudem, zmianami temperatury i innymi niekorzystnymi wpływami; w tym celu można oczywiście użyć improwizowanych środków, ale specjalistyczna ochrona jest zwykle wygodniejsza i niezawodna. Ponadto prawie wszystkie futerały i większość futerałów znacznie upraszczają transport przyrządu - w szczególności ze względu na to, że można je wykorzystać również do kompletnych akcesoriów.

- Zdalne sterowanie. Wśród dalmierzy i niwelatorów funkcja ta praktycznie nie występuje, ponieważ praca z nimi wiąże się z ciągłym pozostawaniem urządzenia w rękach operatora. Jednak w przypadku niwelatorów laserowych, które wymagają regularnego przemieszczania się z urządzenia na znakowaną powierzchnię i z powrotem, pilot może być bardzo przydatnym dodatkiem - ze względu na to, że minimalizuje takie ruchy. Np. po zaznaczeniu na ścianie „frontu roboczego” zgodnie z projekcją z poziomu, nie trzeba podchodzić do urządzenia, aby je wyłączyć – wystarczy wydać polecenie z pilota. Na krótkich dystansach oszczędność czasu i wysiłku może nie być tak oczywista, ale na dużych obszarach może być całkiem zauważalna.
Filtry
Cena
oddo zł
Marki
Rodzaj
Typ (niwelatory)
Maks. zasięg pracy
Zasięg pracy (z odbiornikiem)
Dokładność
Dokładność dalmierza laserowego
Płaszczyzna
Liczba punktów odniesienia
Klasa lasera
Kolor wiązki
Funkcje i możliwości
Wyposażenie
rozwiń
Funkcje dalmierza
Wyświetlacz
Zasilanie
Czas pracy
Liczba pomiarów
Wyczyść parametry
Modele