Польща
Каталог   /   Комп'ютерна техніка   /   Комплектуючі   /   Материнські плати
Материнські плати ASRock 

Статті, огляди, корисні поради

Усі матеріали
Відгуки про бренди з розділу материнські плати
Рейтинг брендів з розділу материнських плат складений за відгуками і оцінками відвідувачів сайту
05.2024
Рейтинг материнських плат (травень)
Рейтинг популярності материнських плат заснований на комплексній статистиці по виявленому інтересу інтернет-аудиторії
Найкращі материнські плати під сокет Intel LGA 1700
Материнські плати з підтримкою процесорів Intel 13 та 14 покоління для складання продуктивного ПК
Як вибрати материнську плату
Материнська плата – основа будь-якого комп'ютера. Розбираємося, як вибрати підходящий варіант для роботи, ігор та розваг
Потужно, гаряче та дорого: огляд процесорів Ryzen 7000
Розбираємось з новою архітектурою Zen 4, сокетом AM5, пам'яттю DDR5 та самими процесорами Ryzen 7000 Raphael
Найкращі материнські плати на чипсеті AMD X670E
П'ятірка висококласних материнок з підтримкою процесорів Ryzen 7000 та оперативної пам'яті DDR5
Складання просунутого ігрового ПК для Forspoken
Потужний комп'ютер із процесором Ryzen 7, відеокартою GeForce RTX 4070 Ti та системою рідинного охолодження
Найкращі материнські плати на чипсеті Intel Z790
Вибираємо безкомпромісний фундамент для новеньких процесорів Core i5/i7/i9

Материнські плати: характеристики, типи, види

Показати все

Призначення

Загальна спеціалізація материнської плати — тип задач, під які вона оптимізована. Зазначимо, що поділ за даним показником нерідко є досить умовним, схожі за характеристиками моделі можуть належати до різних категорій. Тим не менш, дані про спеціалізацію помітно спрощують вибір.

Крім традиційних «материнок» для дому й офісу, в наш час можна зустріти рішення для високопродуктивних ПК (High-End Desktop) і для серверів, а також плати геймерського призначення і моделі для розгону (overclocking) (останні два варіанти іноді обєднують в одну категорію, проте це все ж таки різні типи материнських плат). Існують також спеціалізовані моделі для майнінгу криптовалют, однак їх випускається дуже небагато — тим більше що для майнінгу придатні багато плат, що першопочатково мають інше призначення (див. «Підходить для майнінгу»).

Ось детальніший опис кожного різновиду:

— Для дому і офісу. Материнські плати, які не належать ні до одного з більш специфічних типів. Загалом даний різновид «материнок» дуже різноманітний, він включає варіанти від бюджетних плат для скромних офісних ПК до прогресивних моделей, які впритул наближаються до геймерським і HEDT-рішень. Проте в більшості своїй рішення з даної категорії призначені для нескладних побутових...завдань: роботи з документами, вебсерфінгу, 2D-дизайну та верстки, ігор у невисокій і середній якості тощо.

— Геймерська. Плати, першопочатково створені для застосування в сучасних ігрових ПК. Крім високої продуктивності та сумісності з потужними комплектуючими, насамперед відеокартами (нерідко відразу декількома, в форматі SLI і/або Crossfire — див. нижче), такі моделі зазвичай мають ще й специфічні функції та особливості саме ігрового характеру. Найпомітніша з таких особливостей — характерне оформлення, іноді з підсвічуванням і навіть синхронізацією підсвічування (див. нижче), що дає змогу органічно вписати плату в оригінальний дизайн геймерської станції. Функціонал геймерських плат може включати прогресивний аудіочип, висококласний мережевий контролер для зниження лагів в онлайн-іграх, вбудовані програмні інструменти для налаштування і оптимізації продуктивності тощо. Також в подібних моделях можуть передбачатися розширені можливості по розгону, які іноді не поступаються можливостям спеціалізованих плат для оверклокінгу (див. нижче). А іноді межа між ігровими та оверклокерськими рішеннями взагалі стирається: наприклад, окремі плати, що позиціонуються виробником як ігрові, за функціоналом можуть швидше належати до моделей для розгону.

— Для розгону (overclocking). Високопродуктивні плати, що мають розширений набір інструментів для оверклокінгу — підвищення продуктивності системи за рахунок тонкого налаштування окремих компонентів (в основному за рахунок збільшення тактових частот, використовуваних цими компонентами). У більшості звичайних «материнок» таке налаштування пов'язане зі значними труднощами і ризиком, воно зазвичай є недокументованою функцією і не охоплюється умовами гарантії. Проте в даному випадку ситуація протилежна: плати «для розгону» тому так і називаються, що можливість оверклокінгу в них закладена виробником. Однією з найбільш помітних особливостей таких моделей є наявність в прошивці (BIOS'і) спеціальних програмних інструментів для управління розгоном, що робить оверклокінг максимально безпечним і доступним навіть для недосвідчених користувачів. Інша особливість — покращена сумісність з вбудованими інструментами розгону, передбаченими в сучасних процесорах, модулях RAM тощо. В будь-якому разі, саме цей різновид плат буде оптимальним вибором для тих, хто хоче зібрати досить потужний ПК з можливістю експериментів в плані продуктивності.

— HEDT (High-End Desktop). Материнські плати, призначені для високопродуктивних робочих станцій та інших ПК аналогічного рівня. Багато в чому схожі з геймерськими і іноді навіть позиціонуються як ігрові, однак створені в розрахунку швидше на загальну продуктивність (у тому числі у професійних задачах), ніж на впевнену роботу саме з іграми. Одна з ключових особливостей подібних «материнок» — широкий функціонал по роботі з оперативною пам'яттю: слотів під «оперативку» у них передбачається не менше 4, а частіше 6 і більше, максимальна частота RAM становить не менше 2500 МГц (а частіше 4000 МГц і вище), а максимальний об'єм — не менше 128 ГБ. Інші характеристики, зазвичай, знаходяться на аналогічному рівні. Також в прошивці можуть передбачатися інструменти для розгону, хоча за цим функціоналом подібні плати найчастіше все ж поступаються оверклокерським. Зазначимо, що такі рішення першопочатково можуть позиціонуватися як геймерські; підставою для віднесення до категорії HEDT в таких випадках є відповідність вищезазначеним критеріям.

— Для сервера. Материнські плати, спеціально розроблені для серверів. Подібні системи помітно відрізняються від звичайних настільних ПК — зокрема, вони працюють з великими об'ємами накопичувачів і мають підвищені вимоги до швидкості і надійності передачі даних; відповідно, для побудови серверів найкраще застосовувати спеціалізовані комплектуючі, включаючи материнські плати. Серед основних особливостей таких материнок — велика кількість слотів під оперативну пам'ять (нерідко понад 4), можливість підключення великої кількості накопичувачів (обов'язково більше 4 слотів SATA 3, часто — 8 та більше), а також підтримка спеціальних технологій (на зразок ECC — див. нижче). Крім того, подібні плати можуть виконуватися в специфічних форм-факторах на зразок EEB або CEB (див. «Форм-фактор»), хоча зустрічаються і більш традиційні варіанти.

— Створені для майнінгу. Материнські плати, спеціально створені для майнінгу криптовалют (BitCoin, Ethereum тощо). Підкреслимо, що мова йде не просто про можливості такого застосування (див. «Підходить для майнінгу»), а про те, що «материнка» першопочатково позиціонується як рішення для створення криптовалютної «ферми». Нагадаємо, майнінг являє собою видобування криптовалюти шляхом виконання спеціальних обчислень; такі обчислення зручніше всього проводити засобами кількох продуктивних відеокарт відразу. Відповідно, однією з відмінних особливостей плат для майнінгу є наявність декількох (зазвичай не менше 4) слотів PCI-E 16x для підключення таких відеокарт. Втім, дана категорія «материнок» особливого поширення не отримала: аналогічні характеристики зустрічаються і серед плат більш загального призначення, на них цілком можна досягти продуктивності, достатньої для ефективного майнінгу.

Socket

Тип сокета (роз'єму для процесора), яким оснащена материнська плата. Різним моделям процесорів відповідають різні типи сокетів, та перед покупкою материнської плати варто окремо уточнити, чи відповідає тип роз'єму на ній типу роз'єму для бажаного процесора.

Відповідно, виробники материнських плат представляють платформи для актуальних процесорів: Intel S1150, S1155, S1156, S1356, S1366, S2011, S2011 v3, S2066, S1151, S1151 Coffee Lake, S3647, S1200, S1700.

І AMD: AM3/AM3+, FM2/FM2+, AM4, TR4 / TRX4.

Кількість socket'ів

Кількість сокетів (роз'ємів для процесорів), встановлених на материнській платі. Плати, розраховані на використання в звичайних ПК, зазвичай, мають лише один сокет; плати, розраховані на установку в робочих станціях і серверах і рішення ресурсномістких завдань, можуть мати до 4 сокетів і передбачати, таким чином, встановлення до 4 процесорів в одній системі.

Форм-фактор

Форм-фактор материнської плати визначає насамперед її фізичні розміри, і, відповідно, ряд параметрів, що безпосередньо з ними пов'язаних: тип корпусу комп'ютера, спосіб встановлення, тип роз'єму живлення, кількість слотів під додаткові плати (слотів розширення) і т. ін. На даний момент існують такі основні форм-фактори материнських плат:

ATX. Один з найбільш поширених форм-факторів материнських плат для ПК. Стандартний розмір такої плати — 30,5х24,4 см, вона має до 7 слотів розширення і 24-контактний або (рідше, в старих моделях) 20-контактний роз'єм живлення.

Micro-ATX. Злегка зменшена версія форм-фактора ATX, з більш компактними габаритами (зазвичай 24,4х24,4 см) і, відповідно, меншою кількістю місць під периферію — гнізд під «оперативку» зазвичай всього два, слотів розширення — від двох до чотирьох. Тим не менш, незважаючи на обмежені розміри, такі плати можуть призначатися і для досить потужних систем.

Mini-ITX. Материнські плати компактних розмірів (17х17 см). Призначені для використання насамперед в комп'ютерах малого форм-фактора (small form-factor, SFF), простіше кажучи — компактних ПК. За монтажним специфікаціям і розташуванням роз'ємів і слотів сумісні з корпусами стандарту ATX. Зазвичай мають один слот розширення.

mini-STX. Ще один представник компактних форм-факторів, що пер...едбачає розмір плати 140х147 мм. Таким чином, загальний розмір виходить майже на третину менше, ніж у mini-ITX. При цьому подібні плати нерідко мають посадкові місця під досить потужні процесори (наприклад, сокет LGA 1151 для чипів Intel Core) і робляться в розрахунку на відповідні значення TDP. А ось слоти розширення, зазвичай, відсутні.

— micro-DTX. Порівняно новий компактний форм-фактор, зустрічається нечасто, в основному серед досить специфічних материнських плат, зокрема, моделей, розрахованих на корпуси у форм-факторі PIO. Такий форм-фактор характеризується дуже невеликими розмірами і вагою і дозволяє закріпити корпус прямо за монітором, на стандартному кріплення VESA. Однією з особливостей «материнок» під такі системи є те, що відеокарта в них встановлюється вздовж плати, а не перпендикулярно — відповідно, роз'єм PCI-E 16x (див. нижче) має нестандартне розташування. При цьому з кріпильним елементам плати micro-DTX аналогічні microATX і можуть використовуватися в корпусах відповідного форм-фактора (хіба що для коректної установки відеокарти може знадобитися додаткове оснащення). Стандартний розмір такої плати — 170 х 170 мм, аналогічно mini-ITX.

— mini-DTX. Проміжний формат між описаним вище microDTX і оригінальним DTX; іноді також описується як подовжена версія mini-ITX. Має стандартний розмір 170 x 203 мм і може оснащуватися двома слотами розширення (у mini-ITX і mini-DTX такий слот один); по застосуванню повністю аналогічний призначається в основному для компактних корпусів, зокрема, комп'ютерів типу HTPC.

XL-ATX. Збільшена різновид форм-фактора ATX. Поки ще не є загальноприйнятим стандартом, варіанти розмірів включають, зокрема, 32,5х24,4 см з 8 слотами розширення і 34,3х26,2 см з кількістю додаткових слотів до 9.

Thin mini-ITX. «Тонка» різновид описаного вище зменшеного форм-фактора mini-ITX: згідно офіційної специфікації, загальна товщина плати thin mini-ITX не повинна перевищувати 25 мм. Також призначений для найбільш мініатюрних комп'ютерів — зокрема, HTPC.

E-ATX. Буква E в назві даного форм-фактора розшифровується як «Extended» — розширений. Згідно з назвою, E-ATX являє собою ще одну збільшену різновид ATX, використовує плати розміром 30,5х33 см.

— EEB. Повна назва SSI EEB. Форм-фактор, який застосовується в серверних системах (див. «За напрямом»), передбачає розмір плати 30,5х33 см.

— CEB. Повна назва — SSI CEB. Ще один форм-фактор «серверних материнських плат. Фактично являє собою більш вузьку версію описаного вище EEB, із зменшеною до 25,9 см шириною (при тій же висоті 30,5 см).

— flex-ATX. Одна з компактних варіацій ATX, передбачає розміри плати не більш 229х191 мм, а також не більше 3 слотів розширення. При цьому по розташуванню кріпильних отворів цей стандарт ідентичний microATX; власне, він розроблявся як потенційна заміна для останнього, однак з низки причин особливого поширення не отримав, хоча і продовжує випускатися.

— Нестандартний (Custom). Також використовується назва Proprietary. Материнські плати, які не відповідають стандартним форм-факторів і розраховані на корпуси особливих розмірів (зазвичай, фірмові).

Фаз живлення

Кількість фаз живлення процесора, передбачене в материнській платі.

Дуже спрощено фази можна описати як електронні блоки особливої конструкції, через які живлення поступає на процесор. Завдання таких блоків полягає в тому, щоб оптимізувати це живлення, зокрема звести до мінімуму коливання потужності при зміні навантаження на процесор. Загалом чим більше фаз, тим нижче навантаження на кожну з них, тим стабільніше живлення і довговічніше електроніка плати. А чим потужніший CPU і чим більше в ньому ядер — тим більше фаз потрібно для нього; це кількість ще більше збільшується, якщо процесор планується розганяти. Наприклад, для звичайного чотириядерного чипу нерідко виявляється досить всього чотирьох фаз, а для розігнаного їх може знадобитися не менше восьми. Саме через це у потужних процесорів можуть виникати проблеми при використанні недорогих малофазових «материнках».

Детальні рекомендації щодо вибору кількості фаз під конкретні серії і моделі CPU можна знайти в спеціальних джерелах (у тому числі документації на сам процесор). Тут же відзначимо, що при великій кількості фаз на материнці (понад 8) частина з них може бути віртуальними. Для цього реальні електронні блоки доповнюються подвоювачами або навіть потроювачами, що, формально, збільшує число фаз: наприклад, 12 заявлених фаз можуть являти собою 6 фізичних блоків з подвоювачами. Однак віртуальні фази сильно поступаються реальним можливостям — по суті, вони являють собою лише доповнення, злегка поліпшують...характеристики реальних фаз. Так що, скажімо, у нашому прикладі коректніше говорити не про дванадцятьох, а лише про шість (хоча і поліпшених) фазах. Ці нюанси треба обов'язково уточнювати при виборі материнки.

Радіатор VRM

Наявність у конструкції материнської плати окремого радіатора для VRM.

VRM — це модуль регулювання напруги, через який живлення від комп'ютерного БЖ поступає на процесор. Цей модуль знижує стандартна напруга блока живлення (+5, +12 В) до більш низького значення, необхідного для роботи процесора (зазвичай, трохи більше 1 В). При високих навантаженнях регулятор напруги може сильно нагріватися, і без спеціалізованої системи охолодження справа може закінчитися перегрівом і навіть перегорання деталей. Радіатор VRM знижує ймовірність подібних ситуацій; він може виявитися зайвим для будь-якого CPU, і вкрай бажаним, якщо плату планується використовувати з потужним висококласним процесором (особливо розігнаним).

Теплові трубки

Теплова трубка являє собою герметичну конструкцію, в якій знаходиться легкокипляча рідина. При нагріванні одного кінця трубки ця рідина випаровується і конденсується в іншому кінці, відбираючи таким чином тепло у джерела нагрівання і передаючи його радіатору. Такі пристосування прості та водночас ефективні, тому вони можуть легко використовуватися як доповнення до радіаторів.

Водяне охолодження

Наявність системи водяного охолодження говорить про «гаряче» призначення материнської плати. Такий варіант має сенс тільки в найпотужніших геймерських збірках, а також системах з потенціалом для подальшого «розгону» — тобто в конфігураціях, для яких недостатньо традиційного повітряного охолодження за допомогою кулерів.

Вбудований процесор

Наявність у материнської плати власного процесора. З одного боку, це позбавляє користувача від необхідності купувати процесор окремо і від проблем з сумісністю процесора і материнської плати. З іншого боку, вбудованими процесорами найчастіше оснащуються компактні материнські плати форм-фактору mini-ITX (див. Форм-фактор), а самі процесори зазвичай належать до енергозберігаючих моделей і мають досить невисокі характеристики продуктивності.

Модель вбудованого процесора

Назва вбудованого процесора, встановленого в материнську плату з відповідною функцією. Знаючи точну назву моделі, можна знайти детальні характеристики, відгуки, результати тестів та іншу інформацію, і оцінити таким чином, наскільки даний процесор відповідає бажаним показниками системи. Особливо така можливість стане в нагоді, якщо комп'ютер, для якого купується «материнка», планується використовувати для вирішення специфічних завдань.

Металевий бекплейт

Наявність металевого бекплейта в конструкції материнської плати.

Бекплейт — це спеціальна пластина, яка розташована із задньої сторони плати (тобто з протилежного боку від слотів підключення). Така особливість характерна переважно для прогресивних «материнок», що розраховані на потужні системи: окремі компоненти таких систем (особливо охолодження) можуть мати досить велику вагу, і їх установлення безпосередньо на плату могло б призвести до її пошкодження. А металевий бекплейт дає можливість уникнути цього: він відіграє роль додаткової опори, яка знімає основне навантаження з «материнки». Водночас така пластина зазвичай робиться досить товстою і пружною, щоб без наслідків перенести навіть дуже велику вагу комплектуючих.

POST-кодер

Штатна система цифрової індикації для відображення POST-кодів ініціалізації материнської плати. Дякувати POST-кодеру можна легко визначити, на якому з компонентів присутній несправність.

LED підсвічування

Наявність власного світлодіодного підсвічування у материнської плати. Дана особливість не впливає на функціонал «материнки», зате надає їй незвичайного зовнішнього вигляду. Тому звичайному користувачеві навряд чи має сенс спеціально шукати подібну модель (йому достатньо материнської плати без підсвічування), а ось для любителів модінгу підсвічування може виявитися дуже до речі.

LED-підсвічування може мати вигляд окремих вогників або світлодіодних стрічок, виконуватися у різних кольорах (іноді — з можливістю вибору кольору) і підтримувати додаткові ефекти — миготіння, мерехтіння, синхронізацію з іншими компонентами (див. «Синхронізація підсвічування») тощо. Конкретні можливості залежать від моделі «материнки».

Синхронізація підсвітки

Технологія синхронізації, передбачена в платі з LED-підсвічуванням (див. вище).

Сама по собі синхронізація дозволяє «узгодити» підсвічування материнської плати з підсвічуванням інших компонентів системи — корпусу, відеокарти, клавіатури, миші і т. ін. Завдяки такому погодженням всі компоненти можуть синхронно змінювати колір, одночасно вмикатися/вимикатися і т. ін. Конкретні особливості роботи такого підсвічування залежать від застосовуваної технології синхронізації, а вона, зазвичай, у кожного виробника своя (Mystic Light Sync у MSI, RGB Fusion Gigabyte тощо). Також від цього залежить сумісність компонентів: всі вони повинні підтримувати одну технологію. Так що найпростіше добитися сумісності підсвічування, зібравши комплектуючі від одного виробника.

Розміри (ВхШ)

Розміри материнської плати у висоту і ширину. Передбачається, що традиційне розміщення материнських плат — вертикальне, тому в даному випадку один з габаритів називають не довжиною, а заввишки.

Розміри материнських плат багато в чому визначаються їх форм-факторами (див. вище), однак розмір конкретної плати може дещо відрізнятися від стандарту, прийнятого для даного форм-фактора. Крім того, уточнити розміри за характеристиками конкретної «материнки» зазвичай простіше, ніж шукати або згадувати загальну інформацію по форм-фактору. Тому дані про розмір можуть наводитися навіть для моделей, цілком відповідають стандарту.

Третій розмір — товщина — з низки причин вважається менш важливим, тому його часто опускають.

Чипсет

У компанії AMD актуальними на сьогодні моделями чипсетів є B450, A520, B550, X570, X570S, A620, B650, B650E, X670 и X670E. Для Intel, зі свого боку, список чипсетів виглядає так: X299, H410, B460, H470, Z490, H510, B560, H570, Z590, H610, B660, H670, Z690, B760, Z790.

Чипсет є набором мікросхем на материнській платі, через який безпосередньо здійснюється взаємодія окремих компонентів системи: процесора, RAM, накопичувачів, аудіо- і відеоадаптерів, мережевих контролерів тощо. Технічно такий набір складається з двох частин — північного й південного мосту. Ключ...овим елементом є північний мост, він пов'язує між собою процесор, пам'ять, відеокарту і південний мост (разом з пристроями, якими він управляє). Тому як модель чипсета нерідко вказують саме назву північного мосту, а модель південного мосту уточнюють окремо (див. нижче); саме така схема використовується в материнських платах традиційного компонування, де мости виготовляються у вигляді окремих мікросхем. Зустрічаються також рішення, де обидва мости об'єднані в одному чипі; для них може зазначатися назва чипсета повністю.

У будь-якому разі, знаючи модель чипсета, можна знайти різні додаткові дані щодо нього — від загальних оглядів до спеціальних інструкцій. Пересічному користувачеві подібна інформація здебільшого не потрібна, однак вона може знадобитися для різних професійних задач.

Південний міст

Модель південного мосту, встановленого в материнській платі.

Цей компонент «материнки» є однією із складових частин чипсета. Детальніше про чипсеті див. вище; тут же відзначимо, що південний міст відповідає за взаємодію материнської плати з периферійними пристроями: платами розширення (звуковими, мережевими), накопичувачами, зовнішній USB-периферію і т. ін. Знаючи назву цього модуля, при необхідності можна легко знайти детальні дані про його характеристиках і можливостях. Пересічному користувачеві подібна інформація, зазвичай, не потрібно, однак вона може згодитися для різних професійних завдань.

BIOS

Тип BIOS, встановлений на материнську плату. Зазначимо, що тут враховуються тільки «класичні» BIOS — від Ami, від Award і від Intel; більш прогресивний UEFI BIOS винесено в окремий пункт (див. нижче).

BIOS — це базова система вводу-виводу, власна програмна прошивка материнської плати, що зберігається в її постійної пам'яті; вона дозволяє всім апаратних компонентів системи взаємодіяти між собою, навіть якщо на комп'ютері не інстальовано. Іншими словами, саме «біос» управляється комп'ютер з моменту вмикання до завантаження операційної системи. Також ця прошивка включає набір інструментів для зміни базових налаштувань.

Говорячи про конкретні різновиди, варто сказати, що згадані «класичні» прошивки не мають між собою принципових відмінностей; до того ж набір можливостей багато в чому визначається видом BIOS, а моделлю материнської плати. Тому тип BIOS не є ключовим при виборі; навіть для професіоналів і ентузіастів він рідко виявляється принциповим.

Підтримка DualBIOS

Підтримка материнської платою технології DualBIOS.

Збої і помилки в BIOS (див. BIOS) є однією з найбільш серйозних проблем, які можуть виникнути у сучасного ПК — вони не тільки позбавляють комп'ютер працездатності, але ще й дуже складні у виправленні. Технологія DualBIOS створена для полегшення боротьби з подібними проблемами. Материнські плати, виконані за цією технологією, мають дві мікросхеми для запису BIOS: перша мікросхема містить основну версію BIOS, яка використовується для завантаження системи в штатному режимі, друга — резервну копію BIOS в початковій (фабричних) конфігурації. Резервна мікросхема вступає в роботу у разі виявлення помилки в основний BIOS: якщо виявлена помилка в програмному коді, він відновлюється до оригінальної фабричної версії, якщо ж мав місце апаратний збій — резервна мікросхема бере керування системою на себе, замінюючи основну. Це дозволяє забезпечити працездатність системи навіть при серйозних проблемах в роботі BIOS, не вдаючись до складних процедур відновлення.

UEFI BIOS

Наявність в материнській платі прошивки UEFI BIOS.

Така прошивка зазвичай поєднується з одним із класичних «биосов» (див. BIOS). Фактично вона являє собою додаткову надбудову, яка розширює можливості BIOS і робить його більш зручним в управлінні. За деякими можливостями UEFI наближається до повноцінної операційної системи: вона має зручний і зрозумілий навіть для не-фахівця графічний інтерфейс, підтримує управління мишкою, оснащена великим набором інструментів, а в деяких версіях є навіть можливість виходу в Інтернет. Крім того, ця прошивка враховує всі особливості сучасного комп'ютерного «заліза» — в тому числі з'явилися нещодавно і не охоплені попередніх, традиційних «биосах».

Активне охолодження

Наявність власної вбудованої системи активного охолодження.

Активним називають охолодження, при якому тепло примусово відводиться від предмета, який нагрівається і ця функція зазвичай забезпечується за допомогою вентиляторів. Таке рішення покликане зменшити теплове навантаження на материнські плати без зовнішніх кулерів, які в будь-якому разі так чи інакше будуть додатково встановлені.

DDR3

Кількість слотів під планки оперативної пам'яті стандарту DDR3, передбачене в материнській платі.

DDR3 — третє покоління оперативної пам'яті з так званою подвійною передачею даних. Деякий час тому цей стандарт був найпопулярнішим в комп'ютерній техніці, проте зараз він все більше поступається позиції більш нового і досконалого DDR4. Тим не менш, плати під DDR3 все ще зустрічаються в продажу; вони можуть мати 2, 4, а то і 6 і більше слотів для такої пам'яті.

DDR4

Кількість слотів під планки оперативної пам'яті стандарту DDR4, передбачене в материнській платі.

DDR4 — подальше (після третьої версії) розвиток стандарту DDR, випущене в 2014 році. Покращення, порівняно з DDR3, традиційні — збільшення швидкості роботи і зниження енергоспоживання; об'єм одного модуля може становити від 2 до 128 ГБ. Саме на цей стандарт RAM розраховано більшість сучасних материнських плат; кількість слотів під DDR4 зазвичай становить 2 або 4, рідше — 6 і більше.

DDR5

Кількість слотів під планки оперативної пам'яті стандарту DDR5, передбачена в материнській платі.

DDR5 впроваджується на заміну четвертої версії стандарту DDR з кінця 2020 року. У ньому передбачається приблизно дворазовий приріст продуктивності підсистеми пам'яті і нарощування пропускної здатності в порівнянні з DDR4 приблизно на 10%.. Замість одного 64-бітного каналу даних DDR5 використовує пару незалежних 32-бітних каналів, які працюють з 16-байтними пакетами і дають змогу доставляти 64 байти інформації за такт по кожному каналу. Нові модулі пам'яті потребуть напруги 1.1 В, а максимальний об'єм однієї планки DDR5 може досягати значних 128 ГБ. Можуть зустрічатися материнки на 4 або на 2 порти DDR5.

Форм-фактор слота для пам'яті

Форм-фактор планок оперативної пам'яті, на які розраховані відповідні слоти на материнській платі. Різні форм-фактори припускають різницю не тільки в розмірах, але і в розташуванні контактів, через що несумісні між собою; це потрібно враховувати при підборі комплектуючих.

— DIMM. Абревіатура від Dual In-Line Memory Module. Цей форм-фактор можна назвати «повнорозмірним», він є стандартним для десктопів і вельми популярний серед материнських плат всіх розмірів.

SO-DIMM. Абревіатура від «Small Outline Dual In-Line Memory Module», що можна приблизно перевести як «зменшена версія DIMM»; відповідно, основними зовнішніми відмінностями планок і слотів під них є зменшені розміри і кількість контактів. Цей варіант застосовується у компактних материнських платах форм-факторів, найчастіше — mini-ITX (див. вище).

Режим роботи

Режим роботи материнської плати з встановленою на неї оперативною пам'яттю. Він може бути наступним:

— Одноканальний. Найпростіший режим роботи: один контролер працює відразу з усім об'ємом оперативної пам'яті. Головні переваги такого режиму — простота й невисока вартість контролерів. Однак продуктивність виходить досить невисокою, тому одноканальні «материнки» в наш час зустрічаються вкрай рідко — переважно серед недорогих моделей для дому/офісу.

— Двоканальний. У цьому режимі з оперативною пам'яттю працюють два незалежних контролери, сама пам'ять поділяється на два блоки й обмін інформацією відбувається в два потоки, що збільшує швидкість роботи. Приріст продуктивності при цьому може складати від 5 – 10 % до 100 %, залежно від конкретного додатка й особливостей системи. Варто враховувати, що для роботи в двоканальному режимі вкрай бажані дві планки RAM з ідентичними характеристиками — це дає можливість досягти оптимальної продуктивності, крім того, не всі «материнки» здатні працювати з парами з неоднакових модулів пам'яті.

— Дво/триканальний. Материнські плати, що підтримують триканальний режим роботи оперативної пам'яті. Такий режим аналогічний до двоканального й принципово відрізняється тільки кількістю потоків і планок пам'яті — їх повинно бути 3 (або кількість, кратна трьом). При цьому, знову ж таки, в ідеалі такі планки повинні бути однаковими; можливість використання різних планок гарантується не у всіх матер...инських платах, а при розбіжності за частотою швидкість каналу буде обмежуватися швидкістю найповільнішого модуля ОЗП. Якщо ж сумісних планок встановлено всього дві, система буде працювати в двоканальному режимі.

Дво/чотириканальний. Материнські плати з підтримкою чотириканального режиму роботи оперативної пам'яті. Цей режим повністю аналогічний до описаного вище дво/триканального й відрізняється тільки кількістю модулів ОЗП — їх потрібно 4 (або число, кратне чотирьом). При цьому, знову ж таки, за умови встановлення меншої кількості планок така «материнка» може працювати у відповідному режимі — дво- чи триканальному (головне, щоб планки відповідали вимогам до такого режиму).

— Шестиканальний. Режим роботи, що передбачає наявність 6 окремих контролерів пам'яті й кратне число слотів під окремі модулі (у деяких платах — 12, теоретично можливо й більше). Зустрічається виключно в топових рішеннях, зазвичай класу HEDT (див. «За напрямом»), створених у розрахунку на безкомпромісну продуктивність.

Максимальна тактова частота

Максимальна тактова частота оперативної пам'яті, підтримувана материнською платою. Фактична тактова частота встановлених модулів ПАМ'ЯТІ не повинна перевищувати цього показника — інакше можливі збої в роботі, та й можливості «оперативки» не вийде використовувати на повну.

Для сучасних ПК частота RAM в 1500 – 2000 МГц і менше вважається дуже невеликий, 2000 – 2500 МГц — скромною, 2500 – 3000 МГц — середньої, 3000 – 3500 МГц — вище середньої, а в найбільш прогресивних платах можуть підтримуватися частоти в 3500 – 4000 МГц і навіть більше 4000 МГц.

Максимальний об'єм пам'яті

Максимальний обсяг оперативної пам'яті, який допускається встановлювати на материнську плату.

При виборі цього параметра важливо враховувати плановане застосування ПК і реальні потреби користувача. Наприклад, об'ємів до 32 ГБ включно цілком вистачить для вирішення будь-яких завдань базового характеру та комфортного запуску ігор, але без суттєвого зачеплення на апгрейд. 64 ГБ - оптимальний варіант для багатьох сценаріїв професійного застосування, а для найбільш ресурсомістких завдань на кшталт 3D-рендерінгу не будуть межею обсягу пам'яті 96 ГБ або навіть 128 ГБ. Найбільш «місткі» материнські плати сумісні з обсягами 192 ГБ і більше — переважно вони є топовими рішеннями для серверів і HEDT (див. «У напрямку»).

Вибирати за цим параметром можна із запасом — для потенційного апгрейду «оперативки», адже встановлення додаткових планок ОЗП є найпростішим способом підвищення продуктивності системи. З урахуванням цього чинника багато порівняно прості материнські плати підтримують дуже значні обсяги RAM.

Підтримка AMP

Можливість роботи материнської плати з модулями оперативної пам'яті, що підтримують технологію AMP (AMD Memory Profiles). Ця технологія була розроблена AMD; вона використовується в материнських платах і блоках RAM і працює лише в тому випадку, якщо обидва компонента системи сумісні з AMP. Аналогічна технологія Intel носить назву XMP.

Основна функція AMP полягає у полегшенні розгону системи («оверклокінгу»): в пам'ять з цією технологією заздалегідь «вшиті» спеціальні профілі розгону, і при бажанні користувачеві залишається тільки вибрати один з цих профілів, не вдаючись до складних процедур налаштування. Це не тільки простіше, але і безпечніше: кожен профіль, який додається в планку, проходить випробування на стабільність роботи.

Підтримка XMP

Можливість роботи материнської плати з модулями оперативної пам'яті, що підтримують технологію XMP (Extreme Memory Profiles). Ця технологія була розроблена Intel; вона використовується в материнських платах і блоках RAM і працює лише в тому випадку, якщо обидва компонента системи сумісні з XMP. Аналогічна технологія AMD носить назву AMP.

Основна функція XMP полягає у полегшенні розгону системи («оверклокінгу»): в пам'ять з цією технологією заздалегідь «вшиті» спеціальні профілі розгону, і при бажанні користувачеві залишається тільки вибрати один з цих профілів, не вдаючись до складних процедур налаштування. Це не тільки простіше, але і безпечніше: кожен профіль, який додається в планку, проходить випробування на стабільність роботи.

Підтримка EXPO

Сумісність модуля пам'яті з технологією EXPO (Extended Profiles for Overclocking). Її створили в компанії AMD спеціально для розгону планок DDR5 у складі систем Ryzen 7000. За своєю суттю, це заводський набір профілів оперативної пам'яті, який спрощує розгін «оперативки». Підтримка EXPO дає змогу підвищити продуктивність в іграх приблизно на 11% при дозволі зображення Full HD.

Підтримка ECC

Можливість роботи материнської плати з модулями пам'яті, що підтримують технологію ECC (Error Checking and Correction). Ця технологія дозволяє виправляти дрібні помилки, що виникають у процесі роботи з даними, і підвищує загальну надійність системи; застосовується переважно в серверах.

SATA 3 (6 Гбіт/с)

Кількість портів SATA 3 на материнській платі.

SATA в наш час є стандартним інтерфейсом для підключення внутрішніх накопичувачів (в основному HDD) і приводів оптичних дисків. В один такий роз'єм підключається один пристрій, так що число портів SATA відповідає числу внутрішніх накопичувачів/приводів, які можна підключити до «материнки» через такий інтерфейс. Велика кількість (6 SATA портів і більше) необхідна в разі активного використання декількох жорстких дисків і іншої периферії. Для побутового ж використання досить 4-ох. SATA 3, згідно з назвою, являє собою третю версію даного інтерфейсу, що працює на загальній швидкості близько 6 Гбіт/с; корисна швидкість, з урахуванням надмірності даних, які передаються, складає близько 4,8 Мбіт/с (600 МБ/с) — тобто вдвічі більше, ніж в SATA 2.

Зазначимо, що різні стандарти SATA цілком сумісні між собою в обох напрямках: до більш нових портів можна підключати більш старі накопичувачі, і навпаки. Єдине що швидкість передачі даних при цьому буде обмежуватися можливостями більш повільної версії, а в деяких ситуаціях може знадобитися переналаштування накопичувачів апаратними (перемикачі, джампера) або програмними засобами. Також варто сказати, що SATA 3 є найбільш новою і прогресивної варіацією SATA на сьогодні, однак можливостей цього стандарту недостатньо, щоб розкрити весь потенціал швидкісних SSD-накопичувачів. Тому SATA 3 використовується в...основному для жорстких дисків і бюджетних SSD, більш швидкісні накопичувачі підключаються в спеціально розроблені для них роз'єми на зразок M.2 або U.2 (див. нижче).

mSATA

Кількість роз'ємів mSATA, передбачених у конструкції материнської плати.

Інтерфейс mSATA(mini-SATA) застосовується переважно для підключення твердотільних накопичувачів (SSD) в однойменному форм-факторі. Такі накопичувачі мають дуже мініатюрний розмір - 50,95 х 30 х 3 мм. Однак можливості самого інтерфейсу обмежені можливостями SATA, тому в наш час він поступово витісняється більше просунутими стандартами – насамперед M.2 (див. нижче).

Відзначимо також, що mSATA фізично ідентичний інтерфейсу mini PCI-E, проте ці стандарти не сумісні електрично.

M.2 роз'єм

Кількість роз'ємів M.2, передбачених у конструкції материнської плати. Зустрічаються материнки на 1 роз'єм М.2, на 2 роз'єми, на 3 роз'єми і більше.

Роз'єм M.2 створений для підключення прогресивних внутрішніх пристроїв в мініатюрному форм-факторі — зокрема, швидкісних SSD-накопичувачів, а також плат розширення на зразок модулів Wi-Fi і Bluetooth. Однак роз'єми, призначені для підключення тільки периферії (Key E), в дане число не входять. У наш час це один з найсучасніших і найпрогресивніших способів підключення комплектуючих. Однак варто враховувати, що через цей роз'єм можуть реалізовуватися різні інтерфейси — SATA або PCI-E, причому не обов'язково обидва відразу. Детальніше див. «Інтерфейс M.2»; тут же відзначимо, що SATA має невисоку швидкість і використовується в основному для бюджетних накопичувачів, а PCI-E застосовується для прогресивних твердотільних модулів і підходить також для інших видів внутрішньої периферії.

Відповідно, кількість M.2 — це кількість комплектуючих такого формату, яку можна одночасно підключити до «материнки». При цьому чимало сучасних плат, особливо середнього і топового рівня, оснащуються двома і більше M.2 роз'ємами, причому саме з підтримкою PCI-E.

Інтерфейс M.2

Електричні (логічні) інтерфейси, що реалізуються через фізичні роз'єми M.2 у материнській платі.

Докладніше про такі роз'єми див. вище. Тут же зазначимо, що вони можуть працювати з двома видами інтерфейсів:
  • SATA – стандарт, спочатку створений для жорстких дисків. Зазвичай у M.2 підтримується найбільш нова версія - SATA 3; проте навіть вона помітно поступається PCI-E за швидкістю (600 МБ/с) та функціоналом (тільки накопичувачі);
  • PCI-E - найпоширеніший сучасний інтерфейс для підключення внутрішньої периферії (інше NVMe). Підходить як для різних плат розширення (таких як бездротові адаптери), наприклад і для накопичувачів, при цьому швидкості PCI-E дають змогу повністю реалізувати потенціал сучасних SSD. Максимальна швидкість обміну даними залежить від версії цього інтерфейсу та кількості ліній. У сучасних роз'ємах M.2 можна зустріти PCI-E версій 3.0 та 4.0, зі швидкостями близько 1 ГБ/с та 2 ГБ/с на одну лінію відповідно; а кількість ліній може становити 1, 2 або 4 (PCI-E 1x, 2x та 4x відповідно)
Саме інтерфейс M.2 в характеристиках материнських плат вказується за кількістю самих роз'ємів і за типом інтерфейсів, передбаченому кожному з них. Наприклад, запис «3хSATA/PCI-E 4x» означає три роз'єми, здатних працювати як у форматі SATA, наприклад і у форматі PCI-E 4x; а позначення "1xSATA/PCI-E 4x, 1xPCI-E 2x" означає два роз'єми, один з яких працює як SATA або PCI-E 4x, а другий - тільки як PCI-E 2x.

Версія інтерфейсу M.2

Версія інтерфейсу M.2 визначає як максимальну швидкість передачі даних, так і пристрої, що підтримуються, які допускається підключати через фізичні роз'єми M.2 (див. відповідний пункт).

Версія інтерфейсу M.2 в характеристиках материнських плат зазвичай вказується за кількістю самих роз'ємів та ревізією PCI-E, передбаченої в кожному з них. Наприклад, запис «3х4.0» означає три роз'єми, здатних працювати з підтримкою PCI-E 4.0; а позначення "2x5.0, 1x4.0" означає тріо роз'ємів, два з яких підтримує PCI-E 4.0, а ще один - PCI-E 5.0.

Охолодження SSD M.2

Вбудований у материнську плату для охолодження накопичувачів SSD, що підключаються через роз'єм M. 2.

Даний роз'єм дозволяє досягати високої швидкості роботи, проте з цієї ж причини багато SSD під M. 2 відрізняються високим тепловиділенням, і щоб уникнути перегріву для них може знадобитися додаткове охолодження. Найчастіше за таке охолодження відповідає найпростіший радіатор у вигляді металевої пластини — у разі SSD цього цілком достатньо.

U.2 роз'єм

Кількість роз'ємів U. 2, передбачене в конструкції материнської плати.

U. 2 являє собою спеціалізований роз'єм для підключення внутрішніх накопичувачів — насамперед сучасних модулів SSD, що підтримують високошвидкісну технологію передачі даних NVMe. Такий інтерфейс може підтримувати до 4 ліній PCI-E (див. «Слотів PCI-E 4x») і до 2 ліній SATA 3 (див. вище). Зазначимо, що на практиці U. 2 використовується в основному в накопичувач форм-фактора 2,5", встановлюваних в слоти корпусу і підключаються до плати за допомогою кабелю. Завдяки великим розмірам такі накопичувачі загалом робляться більшими, ніж модулі під M. 2 (див. вище).

роз'єм eSATA

Кількість портів eSATA на материнській платі.

eSATA є різновидом інтерфейсу SATA, що призначений для підключення зовнішніх накопичувачів. Відповідно, роз'єми цього типу зазвичай розташовуються на задній панелі материнської плати, у вільному доступі зовні. Утім, у наш час такий інтерфейс вважається застарілим і поступово виходить з ужитку, витісняючись більш швидкими й досконалими стандартами — насамперед USB 3.2 різних генерацій (див. нижче).

SAS роз'єм

Кількість портів SAS на материнській платі.

SAS є модифікацією інтерфейсу SCSI і зазвичай використовується для підключення накопичувачів. Пристрої з цим інтерфейсом застосовується переважно в серверних системах і практично не зустрічаються в звичайних настільних ПК. Швидкість передачі даних досягає 6 Гбіт/с (750 Мб/с). Варто відзначити, що накопичувачі з інтерфейсом SATA2 і SATA3 (див. відповідні пункти глосарію) можуть підключатися до інтерфейсу SAS; водночас SAS-пристрій до інтерфейсу SATA підключити неможливо.

Об'єм комплектного накопичувача

Об'єм накопичувача, що поставляється в комплекті з материнською платою.

Таке оснащення зустрічається переважно у висококласних платах геймерського призначення (див. «За призначенням»). Як комплектних накопичувачів зазвичай використовуються SSD-модулі; вони не призначені для великих об'ємів інформації, основне їх завдання — зберігання найбільш критичних даних для прискорення доступу до них. Тому обсяги подібних носіїв зазвичай невеликі — найчастіше 16 або 32 ГБ: для згаданих цілей цього цілком вистачає.

Інтегрований RAID контролер

Наявність вбудованого RAID-контролера на материнській платі. Дана функція дозволяє створювати масиви RAID з підключених до системи накопичувачів, використовуючи тільки інструменти самої «материнки», простіше кажучи — через штатний або UEFI BIOS (див. вище), без використання додаткового обладнання або програмного забезпечення.

RAID — комплект (масив) з декількох взаємопов'язаних накопичувачів, що сприймається системою як єдине ціле. Залежно від типу RAID може забезпечувати збільшення швидкості читання або підвищену надійність зберігання інформації. Ось декілька найбільш популярних типів:

— RAID 0 — дані записуються по черзі на кожного з підключених дисків (один файл може виявитися записаним на різні диски). Забезпечує підвищення продуктивності, але не відмовостійкості.

— RAID 1 — інформація, що записана на один з дисків, «отзеркаливается» на всіх інших. Забезпечує підвищену надійність за рахунок зниження ефективної ємності системи.

— RAID 5 — інформація записується по черзі, як в RAID 0, однак, крім основних даних, на диски пишуться також т. зв. контрольні суми, що дозволяють відновити інформацію у випадку повної відмови одного з дисків. Відрізняється хорошою стійкістю до відмов і не так сильно зменшує корисний об'єм дисків, як RAID 1, проте працює відносно повільно і потребує мінімум 3 дисків (для попередніх типів достатньо двох).

Є й інші різновиди, вони використовуються рідше. У різни...х материнських платах може передбачатися підтримка різних типів RAID, тому перед покупкою моделі з даної функції не завадить уточнити деталі окремо.

Слотів PCI-E 1x

Кількість слотів PCI-E (PCI-Express) 1x, встановлених на материнській платі. Зустрічаються материнки на 1 слот PCI-E 1x, на 2 роз'єми PCI -E 1x, на 3 порти PCI-E 1x і навіть більше.

Шина PCI Express використовується для підключення різних плат розширення — мережевих і звукових карт, відеоадаптерів, ТВ-тюнерів і навіть SSD-накопичувачів. Цифра в назві вказує на кількість ліній PCI-E (каналів передачі даних), підтримуваних даним слотом; чим більше ліній, тим вище пропускна здатність. Відповідно, PCI-E 1x — це базовий, найповільніший різновид даного інтерфейсу. Швидкість передачі даних у таких слотів залежить від версії PCI-E (див. «Підтримка PCI Express»): зокрема, вона становить трохи менше 1 ГБ/с для версії 3.0 і трохи менше 2 ГБ/с для 4.0.

Окремо зазначимо, що загальне правило для PCI-E таке: плату потрібно підключати до слоту з такою ж або більшою кількістю ліній. Таким чином, з PCI-E 1x будуть гарантовано сумісні тільки плати на одну лінію.

Слотів PCI-E 4x

Кількість слотів PCI-E (PCI-Express) 4x, встановлених на материнській платі.

Шина PCI Express використовується для підключення різних плат розширення — мережевих і звукових карт, відеоадаптерів, TV-тюнерів і навіть SSD-накопичувачів. Цифра в назві вказує на кількість ліній PCI-E (каналів передачі даних), підтримуваних даним слотом; чим більше ліній, тим вище пропускна здатність. 4 лінії PCI-E забезпечують швидкість передачі даних близько 4 ГБ/с для версії PCI-E 3.0 і 8 ГБ/с для версії 4.0 (докладніше про версіях див. «Підтримка PCI Express»).

Загальне правило для PCI-E таке: плату потрібно підключати до слоту з такою ж або більшою кількістю ліній. Таким чином, стандартний слот PCI-E 4x можна встановлювати плати на 1 або на 4 лінії PCI Express. Проте варто відзначити, що в конструкції сучасних «материнок» зустрічаються слоти збільшених розмірів, зокрема, PCI-E 4x, відповідні за розмірами PCI-E 16x. Тип таких слотів в нашому каталозі вказується за реальної пропускної здатності, тобто згаданий приклад також буде враховуватися як PCI-E 4x. При цьому до такого роз'єми фізично можна підключити і периферію на 16 каналів PCI-E — однак варто переконатися, що пропускна здатність буде достатньою для нормальної роботи такої периферії.

Слотів PCI-E 8x

Кількість слотів PCI-E 8x, встановлених на материнській платі. Це восьмиканальна версія шини підключення PCI-Express, з мінімальною пропускною спроможністю 16 Гбіт/с в одну сторону (32 Гбіт/с в обидва). Детальніше про стандарт PCI-Express див. «Слотів PCI-E 1x».

Слотів PCI-E 16x

Кількість слотів PCI-E (PCI-Express) 16x, встановлених на материнській платі.

Шина PCI Express використовується для підключення різних плат розширення — мережевих і звукових карт, відеоадаптерів, ТВ-тюнерів і навіть SSD-накопичувачів. Цифра в назві вказує на кількість ліній PCI-E (каналів передачі даних), підтримуваних даним слотом; чим більше ліній, тим вище пропускна здатність. 16 ліній — найбільша кількість, що зустрічається в сучасних слотах і платах PCI Express (технічно можливо і більше, однак роз'єми виходили б занадто громіздкими). Відповідно, подібні слоти є найшвидшими: швидкість передачі даних в них становить 16 ГБ/с для версії PCI-E 3.0 і 32 ГБ/с для версії 4.0 (докладніше про версії див. «Підтримка PCI Express»).

Окремо зазначимо, що саме PCI-E 16x вважається оптимальним роз'ємом для підключення відеокарт. Однак при виборі материнки з кількома такими слотами варто враховувати режими PCI-E, підтримувані нею (див. нижче). Крім того, нагадаємо, що інтерфейс PCI Express дає змогу підключати плати з меншою кількістю ліній до роз'ємів з більшою кількістю ліній. Таким чином, PCI-E 16x підійде для будь-якої плати PCI Express.

Також варто сказати, що в конструкції сучасних «материнок» зустрічаються слоти збільшених розмірів – зокрема, PCI-E 4x, що відповідають за розмірами PCI-E 16x. Однак тип PCI-E слотів в нашому каталозі вказується за реальною пропускною здатністію так що в якості PCI-E 16х враховуються тільки роз'єми..., що підтримують швидкість на рівні 16х.

Режими PCI-E

Режими роботи слотів PCI-E 16x, що підтримуються материнською платою.

Детальніше про цей інтерфейс див. вище, а дані про режими вказуються у тому разі, якщо слотів PCI-E 16x на платі декілька. Ці дані уточнюють, на якій швидкості можуть працювати ці слоти за одночасного підключення до них плат розширення, скільки ліній може використовувати кожен з них. Річ у тім, що загальна кількість ліній PCI-Express на будь-якій «материнці» обмежено, і їх зазвичай не вистачає для одночасної роботи всіх 16-канальних слотів на повній потужності. Відповідно, за одночасної роботи швидкість неминуче доводиться обмежувати: наприклад, запис 16х/4х/4х означає, що «материнка» має три 16-канальних слоти, але якщо до них підключити відразу три відеокарти, то другий і третій слоти зможуть видати швидкість лише на рівні PCI-E 4x. Відповідно, для іншого числа слотів і кількість цифр буде відповідною. Зустрічаються і плати з декількома варіантами режимів — наприклад, 16х/0х/4 і 8х/8х/4х (0х означає, що слот взагалі стає непрацездатним).

Звертати увагу на цей параметр доводиться переважно за умови встановлення декількох відеокарт одночасно: у деяких випадках (наприклад, за використання технології SLI) для коректної роботи відеоадаптерів вони повинні бути підключені до слотів з однаковою швидкістю.

Підтримка PCI Express

Версія інтерфейсу PCI Express, підтримувана материнською платою. Нагадаємо, що цей інтерфейс в наш час є фактично стандартним для підключення відеокарт і інших плат розширення. Він може мати різну кількість ліній — зазвичай 1х, 4х та/або 16х; докладніше про це див. відповідні пункти вище. Тут же відзначимо, що від версії насамперед залежить швидкість передачі даних на одну лінію. Найбільш актуальні варіанти такі:

PCI Express 3.0. Версія, випущена ще в 2010 році і реалізована в «залізі» двома роками пізніше. Однією з ключових відмінностей від попередньої PCI E 2.0 стало застосування кодування 128b/130b, тобто в кожних 130 бітах — 128 основних і два службових (замість 8b/10b, що використовувалася раніше і давала дуже високу надмірність). Це дало змогу збільшити швидкість передачі даних практично вдвічі (до 984 МБ/с проти 500 МБ/с на 1 лінію PCI-E) при відносно невеликому підвищенні числа транзакцій в секунду (до 8 ГТ/с проти 5 ГТ/с). Незважаючи на появу більш нової версії 4.0, стандарт PCI-E 3.0 все ще залишається досить популярним у сучасних материнських платах.

PCI Express 4.0. Чергове оновлення PCI-E, представлене в 2017 році; перші «материнки» з підтримкою цієї версії з'явилися наприкінці весни 2019 року. У порівнянні з PCI-E 3.0 швидкість передачі даних у PCI-E 4.0 була збільшена вдвічі — до 1969 МБ/с на одну лінію PCI-E.

PCI Express 5.0.... Еволюційний розвиток стандарту PCI Express 5.0, фінальна специфікація якого була затверджена у 2019 році, а її реалізація у «залізі» почала втілення з 2021 року. Якщо проводити паралелі з PCI E 4.0, пропускна здатність інтерфейсу зросла вдвічі – до 32 гігатранзакцій на секунду. Зокрема пристрої PCI E 5.0 x16 можуть обмінюватися інформацією на швидкості близько 64 Гбайт/с.

Варто відзначити, що різні версії PCI-E взаємно сумісні між собою, однак пропускна здатність обмежується найбільш повільним стандартом. Приміром, відеокарта PCI-E 4.0, встановлену в слот PCI-E 3.0, зможе працювати тільки на половині своєї максимальної швидкості (за специфікаціями версії 3.0).

Підходить для майнінгу

Материнські плати, які можуть застосовуватися для майнінг криптовалют. Докладніше про цьому процесі див. «За напрямом». Тут же відзначимо, що в дану категорію включені «материнки», які не є першопочатково оптимізованими під майнінг, однак можуть застосовуватися з цією метою. Зокрема, такі моделі мають кілька слотів PCI-E і допускають одночасну установку декількох відеокарт.

PCI-слотів

Кількість PCI-слотів, передбачене в конструкції материнської плати.

Такі слоти використовується для плат розширення. При цьому технічно даний інтерфейс вважається застарілим — зокрема, він помітно поступається більш новим PCI-E по швидкості передачі даних (до 533 МБ/с). Тим не менш, для деяких типів комплектуючих (наприклад, звукових карт) буває цілком достатньо й таких можливостей; а використання PCI дозволяє залишити вільними роз'єми PCI-E, які можуть знадобитися для більш вимогливою периферії. Так що навіть у наш час і материнські плати з слотами PCI, та комплектуючі з таким підключенням все ще можна зустріти в продажу.

Підтримка CrossFire (AMD)

Підтримка материнської платою технології Crossfire від AMD.

Ця технологія дозволяє підключати до ПК відразу кілька окремих відеокарт AMD і об'єднувати їх обчислювальні потужності, підвищуючи відповідним чином графічну продуктивність системи в конкретних завданнях. Відповідно, ця особливість означає, що «материнка» оснащена як мінімум двома слотами під відеокарти PCI — E 16x; взагалі ж Crossfire допускає об'єднання до 4 окремих адаптерів.

Подібний функціонал особливо важливий для вимогливих ігор і «важких» задач зразок 3D-рендеринга. Однак варто мати на увазі, що для використання декількох відеокарт така можливість повинна бути передбачена ще й в додатку, запускаемом на комп'ютері. Так що в деяких випадках один потужний відеоадаптер виявляється кращим, ніж декілька порівняно простих з тим же сумарним об'ємом VRAM.

Аналогічна технологія NVIDIA носить назву SLI (див. нижче). Crossfire відрізняється від неї в основному трьома моментами: можливістю об'єднувати відеоадаптери c різними моделями графічних процесорів (головне, щоб вони були побудовані на одній архітектурі), відсутністю необхідності в додаткових кабелів або мостах (відеокарти взаємодіють безпосередньо через шину PCI-E) і дещо меншою вартістю (що дозволяє застосовувати дану технологію навіть у бюджетних «материнках»). Завдяки останньому практично всі материнські плати з SLI підтримують ще й Crossfire, але не навпаки.

Підтримка SLI (NVIDIA)

Підтримка материнської платою технології SLI від NVIDIA.

Ця технологія дозволяє підключати до ПК відразу кілька окремих відеокарт NVIDIA і об'єднувати їх обчислювальні потужності, підвищуючи відповідним чином графічну продуктивність системи в конкретних завданнях. Відповідно, ця особливість означає, що «материнка» оснащена як мінімум двома слотами під відеокарти PCI — E 16x; взагалі ж SLI допускає об'єднання до 4 окремих адаптерів.

Подібний функціонал особливо важливий для вимогливих ігор і «важких» задач зразок 3D-рендеринга. Однак варто мати на увазі, що для використання декількох відеокарт така можливість повинна бути передбачена ще й в додатку, запускаемом на комп'ютері. Так що в деяких випадках один потужний відеоадаптер виявляється кращим, ніж декілька порівняно простих з тим же сумарним об'ємом VRAM.

Аналогічна технологія AMD носить назву Crossfire (див. вище). Основною відмінністю між цими технологіями є те, що SLI більш вимоглива до сумісності: вона працює тільки на відеокартах з однаковими моделями GPU (хоча інші параметри — виробник, об'єм і частота відеопам'яті і т. п. можуть бути різними). Крім того, відеоадаптери у зв'язці SLI потрібно з'єднувати кабелем або мостом (виняток становлять лише окремі бюджетні моделі); а підтримка цієї технології обходиться дещо дорожче, ніж у випадку Crossfire, тому в материнських платах вона зустрічається рідше (і в основному разом з рішенням від AMD).

Сталеві PCI-E роз'єми

Наявність на материнській платі посилених сталевих роз'ємів PCI-E.

Такі роз'єми зустрічаються переважно в геймерських (див. «За напрямом») та інших прогресивних різновидах материнських плат, розрахованих на використання потужних графічних адаптерів. Сталевими зазвичай робляться слоти PCI-E 16x, якраз і призначені для подібних відеокарт; крім самого слоти, посилену конструкцію має також його кріплення до плати.

Ця особливість дає два ключових переваги порівняно з традиційними пластиковими роз'ємами. По-перше, вона дозволяє встановлювати навіть великі і важкі відеокарти максимально надійно, без ризику пошкодити слот або плату. По-друге, металевий роз'єм відіграє роль захисного екрану і знижує ймовірність появи перешкод; це особливо корисно при використанні декількох відеокарт, встановлених поруч, пліч-о-пліч».

TPM-конектор

Спеціалізований роз'єм TPM для підключення модуля шифрування.

TPM (Trusted Platform Module) дає змогу зашифрувати дані, що зберігаються на комп'ютері, за допомогою унікального ключа, який практично не піддається злому (зробити це вкрай складно). Ключі зберігаються в самому модулі і недоступні ззовні, а захистити дані можна таким чином, щоб їх нормальна розшифровка була можливою тільки на тому комп'ютері, де вони були зашифровані (і з тим же ПЗ). Таким чином, якщо інформація буде незаконно скопійована — зловмисник не зможе отримати до неї доступ, навіть якщо вкрасти оригінальний модуль TPM з ключами шифрування: TPM розпізнає зміну системи і не дасть змогу провести розшифровку.

Технічно модулі шифрування можна вбудовувати прямо в «материнки», проте все ж більш виправдано робити їх окремими пристроями: користувачеві зручніше докупити TPM при необхідності, а не переплачувати за першопочатково вбудовану функцію, яка може не знадобитися. В силу цього зустрічаються материнські плати і взагалі без TPM-конектора.

USB 2.0

Кількість конекторів USB 2.0, передбачених у материнській платі.

USB-конектори (всіх версій) використовуються для підключення до «материнці» портів USB, розташованих на передній панелі корпусу. Спеціальним кабелем такий порт з'єднується з конектором, при цьому один конектор, зазвичай, працює тільки з одним портом. Іншими словами, кількість конекторів на материнській платі відповідає максимальній кількості фронтальних роз'ємів USB, які можна використовувати.

Конкретно ж USB 2.0 є самою старою версією широко використовуються в наш час. Вона забезпечує швидкість передачі даних до 480 Мбіт/с, вважається застарілою і поступово витісняється більш сучасними стандартами, насамперед USB 3.2 gen1 (колишній USB 3.0). Тим не менш, під роз'єм USB 2.0 все ще випускається чимало периферії: можливостей цього інтерфейсу цілком достатньо для більшості пристроїв, що не вимагають високої швидкості підключення.

USB 3.2 gen1

Кількість конекторів USB 3.2 gen1, передбачених на материнській платі.

USB-конектори (всіх версій) використовуються для підключення до «материнці» портів USB, розташованих на зовнішній стороні корпусу (зазвичай на передній панелі, рідше зверху або збоку). Спеціальним кабелем такий порт з'єднується з конектором, при цьому один конектор, зазвичай, працює тільки з одним портом. Іншими словами, кількість конекторів на материнській платі відповідає максимальній кількості корпусних роз'ємів USB, які можна використовувати. При цьому зазначимо, що в даному випадку мова йде про традиційні роз'ємах USB A; конектори під більш нові USB-C згадуються в характеристиках окремо.

Що ж стосується конкретно версії USB 3.2 gen1 (раніше відомої як USB 3.1 gen1 і USB 3.0), то вона забезпечує швидкість передачі даних до 4,8 Гбіт/с і більш високу потужність живлення, чим більш рання стандарт USB 2.0. Водночас технологія USB Power Delivery, що дозволяє досягати потужності живлення до 100 Вт, зазвичай, не підтримується конекторами цієї версії під USB A (хоча може реалізовуватися в конекторах під USB-C).

USB 3.2 gen2

Кількість конекторів USB 3.2 gen2, передбачених на материнській платі.

USB-конектори (всіх версій) використовуються для підключення до «материнці» портів USB, розташованих на зовнішній стороні корпусу (зазвичай на передній панелі, рідше зверху або збоку). Спеціальним кабелем такий порт з'єднується з конектором, при цьому один конектор, зазвичай, працює тільки з одним портом. Іншими словами, кількість конекторів на материнській платі відповідає максимальній кількості корпусних роз'ємів USB, які можна використовувати. При цьому зазначимо, що в даному випадку мова йде про традиційні роз'ємах USB A; конектори під більш нові USB-C згадуються в характеристиках окремо.

Що ж стосується конкретно версії USB 3.2 gen2 (раніше відомої як USB 3.1 gen2 і USB 3.1), то вона працює на швидкості до 10 Гбіт/с. Крім того, в таких конекторах може передбачатися підтримка технології USB Power Delivery, що дозволяє видавати потужність живлення до 100 Вт на роз'єм; однак обов'язковою ця функція не є, її наявність варто уточнювати окремо.

USB C 3.2 gen1

Кількість конекторів USB-C 3.2 gen1, передбачених у материнській платі.

Конектори USB-C (всіх версій) використовуються для підключення до «материнці» портів USB-C, розташованих на зовнішній стороні корпусу (зазвичай на передній панелі, рідше зверху або збоку). Спеціальним кабелем такий порт з'єднується з конектором, при цьому один конектор, зазвичай, працює тільки з одним портом. Іншими словами, кількість конекторів на материнській платі відповідає максимальній кількості корпусних роз'ємів USB-C, які можна використовувати.

Нагадаємо, USB-C є порівняно новим типом USB-роз'єму, він виділяється невеликими розмірами і двосторонньої конструкцією; такі роз'єми мають свої технічні особливості, тому під них потрібно передбачати окремі конектори. А конкретно версія USB 3.2 gen1 (раніше відома як USB 3.1 gen1 і USB 3.0 забезпечує швидкість передачі даних до 4,8 Гбіт/с. Крім того, на роз'ємі USB-C ця версія підключення може підтримувати технологію USB Power Delivery, що дозволяє подавати на зовнішні пристрої живлення потужністю до 100 Вт; однак обов'язковою ця функція не є, її наявність в конекторах тієї чи іншої «материнки» варто уточнювати окремо.

USB C 3.2 gen2

Кількість конекторів USB-C 3.2 gen2, передбачених у материнській платі.

Конектори USB-C (всіх версій) використовуються для підключення до «материнці» портів USB-C, розташованих на зовнішній стороні корпусу (зазвичай на передній панелі, рідше зверху або збоку). Спеціальним кабелем такий порт з'єднується з конектором, при цьому один конектор, зазвичай, працює тільки з одним портом. Іншими словами, кількість конекторів на материнській платі відповідає максимальній кількості корпусних роз'ємів USB-C, які можна використовувати.

Нагадаємо, USB-C є порівняно новим типом USB-роз'єму, він виділяється невеликими розмірами і двосторонньої конструкцією; такі роз'єми мають свої технічні особливості, тому під них потрібно передбачати окремі конектори. А конкретно версія USB 3.2 gen2 (раніше відома як USB 3.1 gen2 і USB 3.1) працює на швидкостях до 10 Гбіт/с і дозволяє реалізувати технологію USB Power Delivery, завдяки якій потужність живлення USB-периферії може досягати 100 Вт на порт. Втім, наявність Power Delivery в конкретних материнках (і навіть в конкретних конекторах на одній платі) варто уточнювати окремо.

USB C 3.2 gen2x2

Кількість портів USB-C 3.2 gen2x2, передбачена в материнській платі.

USB-C являє собою універсальний роз'єм. Він трохи крупніше microUSB, має зручну двосторонню конструкцію (неважливо, якою стороною підключати штекер), а також дає можливість реалізовувати підвищену потужність живлення і ряд спеціальних функцій. Крім того, цей же роз'єм штатно використовується в інтерфейсі Thunderbolt версії v3, а технічно може застосовуватися і для інших інтерфейсів.

Що стосується конкретно версії USB-C 3.2 gen2x2, то вона дає змогу досягти швидкості підключення 20 Гбіт/с — тобто вдвічі вище, ніж у USB-C 3.2 gen2, звідси і назва. Також варто відзначити, що підключення за стандартом 3.2 gen2x2 реалізується тільки через роз'єми USB-C і не застосовується в портах більш ранніх стандартів.

Роз'єм Thunderbolt AIC

5-піновий роз'єм, що дає змогу підключити карту розширення. Вона ж, зі свого боку, забезпечує високу швидкість обміну даними (до 40 Гбіт/с), Можливість підключення зовнішніх моніторів, швидкісну зарядку сумісних пристроїв тощо.

ARGB LED strip

Конектор для підключення адресної світлодіодної стрічки в якості декоративного підсвічування корпусу комп'ютера. Цей тип» розумних " стрічок грунтується на особливих світлодіодах, кожен з яких складається з LED-світила і вбудованого контролера, що дозволяє гнучко управляти світністю по спеціальному цифровому протоколу і створювати приголомшливі ефекти.

RGB LED strip

Роз'єм для підключення декоративної світлодіодної стрічки та інших пристроїв з LED-індикацією. Дозволяє управляти підсвічуванням корпусу за допомогою материнської плати і налаштовувати світіння під свої завдання, в т.ч. синхронізувати його з іншими комплектуючими.

Вбудована відеокарта

Наявність у материнської плати власної відеокарти — модуля для обробки і виводу відеосигналу.

Цей модуль може бути як вбудований в саму плату, так і в початково встановлений на неї процесор (див. «Вбудований процесор»). У будь-якому разі дана особливість позбавляє користувача від необхідності купувати окрему відеокарту. З іншого боку, для роботи з відео вбудований відеочип задіює частина загального об'єму оперативної пам'яті, а тому продуктивність подібних відеокарт, зазвичай, не дуже висока. У світлі цього оптимальним вибором часто є «материнка» без вбудованої відеокарти, що передбачає встановлення окремого графічного адаптера (саме до цієї категорії належать, зокрема, практично всі плати професійного і геймерського призначення).

Модель вбудованої відеокарти

Назва вбудованої відеокарти (див. вище), встановленої в материнську плату. Знаючи назву графічного модуля, можна, при необхідності, з легкістю знайти докладну інформацію про нього — повні характеристики, тести, відгуки і т. ін.

Гібридний режим

Підтримка гібридного режиму зустрічається лише в материнських платах, оснащених власними відеокартами (див. Вбудована відеокарта). При установці на таку плату додаткової окремої відеокарти система може автоматично оптимізувати роботу відеоадаптерів залежно від поточних завдань: використовувати відносно малопотужний, але економічний і безшумний власний відеочип материнської плати для нескладних дій (робота з документами, вебсерфінг) і додатково підключати потужну зовнішню відеокарту для роботи з ресурсоємними додатками (ігри, HD-відео, 3D-візуалізація). Придбати материнську плату з підтримкою гібридного режиму має сенс тільки в тому випадку, якщо Ви плануєте встановити на неї окрему відеокарту. При цьому варто окремо уточнити сумісність цієї відеокарти і материнської плати.

Вихід D-Sub (VGA)

Наявність у материнської плати власного виходу D-Sub (VGA).

Такий вихід призначається для передачі відео з вбудованої відеокарти (див. вище) або процесора з інтегрованою графікою (підкреслимо, що вивести на нього сигнал з дискретної відеокарти через чипсет «материнки» не можна). Що стосується конкретно VGA, то це аналоговий стандарт, першопочатково створений для ЕПТ-моніторів. Він не відрізняється якістю зображення, практично не підходить для роздільних здатностей вище 1280х1024 і не передбачає передачу звуку, а тому загалом вважається застарілим. Тим не менш, входи цього типу продовжують застосовуватися в окремих монітори, телевізори, проєктори тощо; так що і серед материнських плат можна зустріти моделі з такими виходами.

Вихід DVI

Наявність у материнської плати власного виходу DVI; також у цьому пункті уточнюється конкретний вид цього інтерфейсу.

Такий вихід призначається для передачі відео з вбудованої відеокарти (див. вище) або процесора з інтегрованою графікою (підкреслимо, що вивести на нього сигнал з дискретної відеокарти через чипсет «материнки» не можна). Що стосується конкретно DVI, то це стандарт, першопочатково створений для цифрових відеопристроїв, однак допускає і аналоговий формат сигналу — залежно від виду. У сучасній комп'ютерній техніці, включаючи материнські плати, можна зустріти два види DVI:

— DVI-D. Стандарт, який передбачає передачу сигналу тільки в цифровому вигляді. Залежно від підтримуваного режиму, максимальна роздільна здатність такого відео може становити 1920х1200 (одноканальний Single Link) або 2560х1600 (двоканальний Dual Link); при цьому штекери Single Link можна підключати до портів Dual Link, але не навпаки. Також зазначимо, що такі роз'єми сумісні з HDMI через перехідники, при цьому в окремих випадках може передбачатися навіть передача звуку (хоча першопочатково у DVI-D ця функція не підтримується, і її наявність варто уточнювати окремо).

— DVI-I. Стандарт, що поєднує в собі описаний вище DVI-D з аналоговим DVI-A і дозволяє виводити сигнал як цифровому, так і в аналоговому форматі. DVI-A за своїми характеристиками відповідає VGA (див. вище): він підтримує роздільної здатності до 1280х1024 включно і дозво...ляє підключати VGA-екрани через простий перехідник.

Вихід HDMI

Наявність у материнської плати власного виходу HDMI.

Такий вихід призначається для передачі відео з вбудованої відеокарти (див. вище) або процесора з інтегрованою графікою (підкреслимо, що вивести на нього сигнал з дискретної відеокарти через чипсет «материнки» не можна). Що стосується конкретно HDMI, то це комбінований цифровий відео/аудіо інтерфейс, спеціально створений для роботи з HD-дозволом і багатоканальним звуком. На сьогодні він є найбільш поширеним з таких інтерфейсів, підтримка HDMI практично обов'язкова для відеопристроїв, сумісних з HD-стандартами.

Конкретні можливості HDMI залежать від версії (детальніше див. нижче), однак загалом вони досить значні — навіть в самому ранньому (з актуальних на сьогодні) HDMI v.1.4 максимальна роздільна здатність становить 4K, а в більш нових стандартах воно досягає 10K. Так що в материнських платах якість відео, яке передається через такий вихід, нерідко не обмежується можливостями інтерфейсу, а графічною продуктивністю системи.

Версія HDMI

Версія роз'єму HDMI (див. вище), встановлена на материнській платі.

— v.1.4. Найбільш ранній зі стандартів, котрі зустічаються у наш час - з'явився ще в 2009 році. Підтримує роздільну здатність до 4096х2160 включно і дозволяє відтворювати Full HD відео з частотою кадрів до 120 к/с — цього достатньо навіть для відтворення 3D.

— v.1.4 b. Допрацьована варіація описаної вище v.1.4, представила ряд невеликих оновлень і покращень, зокрема, підтримку двох додаткових форматів 3D.

— v.2.0. Версія, відома також як HDMI UHD — саме в цій версії була введена повноцінна підтримка 4К, з частотою кадрів до 60 кадр/с, а також можливість роботи з надширокоекранним відео 21:9. Крім того, завдяки збільшеній пропускній здатності число одночасно відтворених звукових каналів зросла до 32, а аудіопотоків — до 4. А в поліпшенні v.2.0a до всього цього додалася ще й підтримка HDR.

— v.2.1. Ще одна назва — HDMI Ultra High Speed. Порівняно з попередньою версією пропускна здатність інтерфейсу дійсно помітно збільшилася — її вистачає для передачі відео в роздільній здатності аж до 10K на 120 кадрів в секунду, а також для роботи з розширеним простором кольорів BT.2020 (останнє може знадобитися для деяких професійних завдань). Для використання всіх можливостей HDMI v2.1 потрібні кабелі типу HDMI Ultra High Speed, проте функції попередніх стандартів доступні і з звичайними кабелями.

DisplayPort

Наявність у материнській платі виходу DisplayPort.

Перш за все цей цифровий роз'єм використовується для передачі відео з вбудованої відеокарти або процесора з інтегрованою графікою на зовнішні екрани. Притому через один інтерфейс DisplayPort допускається послідовно підключати кілька дисплеїв "ланцюжком" (формат "daisy chain"). Конкретні можливості виходу залежать від версії (див. нижче), проте навіть найскромніша специфікація DisplayPort (з сучасних варіантів) дозволяє працювати з роздільною здатністю 4K за 60 к/с, 5K — за 30 к/с та 8К з деякими обмеженнями.

Інтерфейс DisplayPort є стандартом для моніторів Apple та зустрічається в екранах інших виробників.

Версія DisplayPort

Версія інтерфейсу DisplayPort (див. вище), встановленого в материнській платі.

— v.1.2. Найстаріша із застосовуваних у наш час версій (2010 рік). Саме в ній вперше з'явилася підтримка 3D, можливість роботи з роз'ємом miniDisplayPort, а також опція послідовного підключення декількох екранів до одного порту (daisy chain). Максимальна роздільна здатність повноцінно підтримуване v.1.2 — 5K на 30 к/с, з деякими обмеженнями підтримується також відео 8K. А оновлення v.1.2 а, представлене в 2013 році, додало сумісність з технологією FreeSync, застосовуваної у відеокартах AMD.

— v.1.3. Оновлення стандарту DisplayPort, випущене в 2014 році. Завдяки збільшенню пропускної здатності вдалося передбачити повноцінну підтримку відео 8K (на 30 к/с), а в стандартах 4K і 5K збільшити максимальну частоту кадрів 120 і 60 к/с відповідно. Ще одним ключовим оновленням стала функція Dual-mode, що забезпечує сумісність з інтерфейсами HDMI і DVI через найпростіші пасивні перехідники.

— v.1.4. Найбільш нова версія з широко поширених. Пропускна здатність була ще більш збільшена (майже вдвічі порівняно з v.1.2, що дало змогу, хоч і з деякими обмеженнями, передавати 4K і 5K-відео з частотою до 240 к/с і 8K — до 144 к/с. Крім цього, додалася підтримка ряду спеціальних функцій, в тому числі HDR10, а максимальна кількість одночасно передаються каналів звуку збільшилося до 32.

Аудіочип

Модель аудіочипа (модуля для оброблення і виведення звуку), встановленого на материнській платі. Дані про точну назву звукового чипа будуть корисні при пошуку докладної інформації про нього.

Сучасні «материнки» можуть оснащуватися досить прогресивними аудіомодулями, з високою якістю звуку і широкими можливостями, що робить їх придатними навіть для геймерських і мультимедійних ПК (хоча для професійної роботи зі звуком все одно, швидше за все, знадобиться окрема звукова карта). Ось найпопулярніші з сучасних висококласних аудіочипів: Realtek ALC887, Realtek ALC892, Realtek ALC1150, Realtek ALC1200, Realtek ALC1220, Realtek ALC4050, Realtek ALC4080, Supreme FX.

Підсилювач

Вбудований підсилювач аудіосигналу в материнських платах з інтегрованою звуковою картою. Забезпечує більш високу якість звучання через навушники.

Звук (каналів)

Найбільш прогресивний формат звуку, який аудіочип материнської плати здатний виводити на зовнішню аудіосистему. На даний момент практично всі материнські плати з аудіочипами підтримують стандартний стерео 2.0, а найбільш прогресивний формат може бути таким:

— 4. Конкретна розкладка звуку по чотирьох каналах може бути різною, але в будь-якому разі даний варіант являє собою два класичних каналу стерео, доповнених ще двома — наприклад, центральним і тиловим, або парою тилових (лівий і правий). Це дозволяє розширити звукову сцену і досягти більшої об'ємності, ніж в класичному стерео, зберігши невисоку вартість самих звукових карт. Втім, цей варіант зустрічається рідко, в основному в платах mini-STX (див. «Форм-фактор»).

— 5.1. Шестиканальний звук: два фронтальних, центральний і два задніх каналу, плюс сабвуфер для низьких і наднизьких частот. Дозволяє відтворювати повністю об'ємний звук, який сприймається слухачем не тільки перед, але і за собою. Один з найбільш популярних форматів багатоканального звуку на сьогоднішній день.

— 7.1. Розвиток ідеї об'ємного звуку, закладеної форматом 5.1. Крім стандартної шестиканальної конфігурації (центр, фронтальна пара, тилова пара і сабвуфер), передбачає ще два динаміка. Місце їх встановлення яких може бути різним, залежно від використовуваної схеми восьмиканального звуку: над фронтальною або тиловий парою, у вигляді пари «центр-тил», з боків від слухача і т. ін. В будь-якому разі восьмиканальні схеми...дають змогу більш точно відтворювати напрямок звуку.

— 9.1. Найбільш прогресивний на сьогоднішній день варіант акустики, зустрічається в материнських платах. Аналогічно 7.1, даний стандарт включає 6 каналів по схемі 5.1 плюс додаткові динаміки — тільки в цьому випадку їх чотири, що дає ще більше можливостей по розширенню об'ємного звучання.

Оптичний S/P-DIF

Вихід для передачі звуку, в тому числі багатоканального, в цифровому вигляді. Таке з'єднання примітно повної нечутливістю до електричних перешкод, оскільки для передачі сигналу використовується оптичний, а не електричний кабель. Головним недоліком оптичного S/P-DIF, порівняно з коаксіальним, є певна крихкість кабелю — його можна пошкодити, зігнувши або наступивши.

Коаксіальний вихід

Вихід для передачі аудіосигналу в цифровому вигляді. Дозволяє передавати багатоканальний звук по одному роз'єму через один кабель.

Як і оптичний (див. вище), коаксіальний інтерфейс є різновидом стандарту S/P-DIF. Для передачі сигналу він використовує електричний кабель з роз'ємами RCA («тюльпан»); однак підкреслимо, що звичайний RCA-кабель (для лінійних входів) з цією метою застосовувати не рекомендується, краще використовувати спеціальний екранований дріт. В будь-якому випадку, такий дріт кілька більш схильний перешкод, ніж оптоволокно, зате менш крихкий і не потребує особливої делікатності у зверненні.

Wi-Fi

Версія (стандарт) Wi-Fi, яку підтримує Wi-Fi модуль материнської плати. Основне призначення таких модулів, незалежно від версії — доступ в Інтернет через бездротові роутери; однак Wi-Fi може застосовуватися і для прямого зв'язку з іншими пристроями — наприклад, для передачі матеріалів з цифрової фотокамери або дистанційного управління нею.

В наш час можна зустріти підтримку різних стандартів Wi-Fi (до Wi-Fi 6, Wi-Fi 6E, Wi-Fi 7). Від цього нюансу залежить насамперед максимальна швидкість з'єднання. При цьому різні версії розрізняються також за використовуваними діапазонами; а сумісними між собою вони є в тому разі, якщо збігаються за використовуваними діапазонами. Втім, бездротові модулі сучасних «материнок» часто підтримують не лише вказаний в характеристиках стандарт Wi-Fi, але і більш ранні; цей момент не заважає уточнити окремо, проте здебільшого проблем з сумісністю не виникає. Тим не менш, для використання всіх можливостей тієї або іншої версії її повинні підтримувати обидва пристрої — і «материнка», і зовнішній пристрій.

Список основних версій виглядає так:

— Wi-Fi 3 (802.11 g). Найбільш старий стандарт з актуальних на сьогодні в чистому вигляді зустрічається тільки у відверто застарілих платах. Працює на швидкості до 54 Мбіт/с в діапазоні 2,4 ГГц.
— Wi-fi 4 (802.11 n). Досить популяр...ний стандарт, який лише нещодавно почав поступатися позиціями більш прогресивним варіантам. Підтримує як діапазон 2,4 ГГц, так і більш прогресивний 5 ГГц, а максимальна швидкість передачі даних складає 150 Мбіт/с на канал (до 600 Мбіт/с при 4 антенах).
— Wi-Fi 5 (802.11 ас). Працює тільки на 5 ГГц. Першопочатково максимальна теоретична швидкість передачі даних становила 1300 Мбіт/з, однак з 2016 року використовується стандарт 802.11ac Wave 2, де цей показник збільшено до 2,34 Гбіт/с.
— Wi-Fi 6 (802.11 ax). Першопочатково працює на двох діапазонах — 2,4 ГГц і 5 ГГц — однак специфікація цього стандарту передбачає можливість використання будь-якого робочого діапазону в проміжку між 1 ГГц і 7 ГГц (по мірі появи таких діапазонів). Номінальна швидкість передачі даних у порівнянні з Wi-Fi 5 виросла всього на третину, проте низка поліпшень, що підвищують ефективність зв'язку, дає можливість досягти значного зростання фактичної швидкості — в теорії до 10 Гбіт/с і навіть вище.
— Wi-Fi 6E (802.11ax). Удосконалена гілка стандарту Wi-Fi 6 зі швидкістю передачі даних до 10 Гбіт/с. Стандарт Wi-Fi 6E носить технічну назву 802.11ax. Але на відміну від базового Wi-Fi 6, який іменується аналогічним чином, в ньому передбачається робота в незавантаженому діапазоні 6 ГГц. В цілому ж стандарт використовує 14 різних діапазонів частот, пропонуючи високу пропускну здатність з великою кількістю активних підключень.
— Wi-Fi 7 (802.11be). Технологія, як і попередня Wi-Fi 6E, здатна працювати у трьох частотних діапазонах: 2.4 ГГц, 5 ГГц та 6 ГГц. При цьому максимальну ширину смуги пропускання в Wi-Fi 7 наростили зі 160 МГц до 320 МГц - чим ширший канал, тим більше даних він може передати. У стандарті IEEE 802.11be використовується модуляція 4096-QAM, що lf' pvjue вміщувати більше символів в одиниці передачі даних. З Wi-Fi 7 можна вичавити максимальну теоретичну швидкість обміну інформацією до 46 Гбіт/с. У контексті застосування бездротового підключення для стрімінгу та відеоігор дуже цікавою є впроваджена розробка MLO (Multi-Link Operation). З її допомогою можна агрегувати кілька каналів у різних діапазонах, що суттєво зменшує затримки при передачі даних, забезпечує низький та стабільний пінг. А мінімізувати затримки зв'язку за умови багатьох підключених клієнтських пристроїв покликана технологія Multi-RU (Multiple Resource Unit).

Bluetooth

Наявність у материнської плати власного модуля Bluetooth, що позбавляє від необхідності купувати такий адаптер окремо. Технологія Bluetooth застосовується для прямого бездротового з'єднання комп'ютера з іншими пристроями-мобільними телефонами — плеєрами, планшетами, ноутбуками, бездротовими навушниками і т.п.; можливості з'єднання при цьому включають як обмін файлами, так і управління зовнішніми пристроями. Радіус підключення по Bluetooth становить до 10 м (в більш пізніх стандартах — до 100 м), при цьому пристрої не обов'язково повинні знаходитися на лінії прямої видимості. Різні версії Bluetooth (на кінець 2021 р остання з яких Bluetooth v 5) взаємно Сумісні за основним функціоналом і мають всілякі відмінності.

LAN (RJ-45)

Тип інтерфейсу LAN, передбаченого в конструкції материнської плати. LAN (відомий також як RJ-45 Ethernet) — стандартний роз'єм для дротового підключення до комп'ютерних мереж; може використовуватися і для локалок, і для Інтернету. Тип такого роз'єму позначається на максимальній швидкості. Зазначимо, що в наш час навіть недорогі «материнки» оснащуються зазвичай досить швидкими адаптерами LAN — як мінімум гігабітними. Сенс таких характеристик полягає не тільки (а часто і не стільки) у тому, щоб прискорити передачу великих об'ємів даних, а ще й в тому, щоб знизити лаги в мережеве з'єднання. Це буває важливо для задач, що вимагають хорошої швидкості реакції або точної синхронізації — таких, як онлайн-ігри.

1 Гбіт/с. Стандарт, застосовуваний у переважній більшості материнських плат настільного (не серверного) призначення. З одного боку, забезпечує більш ніж пристойну швидкість з'єднання, достатню навіть для великих обсягів інформації; з іншого — обходиться недорого і може встановлюватися навіть у найпростіші бюджетні «материнки».

2.5 Гбіт/с. Поліпшена версія гігабітного стандарту, вона ж — спрощений і кілька здешевлений варіант 5-гігабітного. Зустрічається в окремих «материнках» ігрового призначення.

5 Гбіт/с. Свого роду перехідний варіант між порівняно простим гігабітний LAN (див. вище) і прогресивним 10-гігабітним (див. нижче). Зустр...ічається в деяких геймерських «материнках». Обходиться цей стандарт дешевше 10-гігабітного, при цьому швидкість зв'язку все одно виходить досить пристойною, а лаги — низькими.

10 Гбіт/с. Подібна швидкість передачі даних незамінна для великих об'ємів інформації; крім того, вона забезпечує високу швидкість проходження окремих блоків даних, що важливо для зниження лагів в онлайн-іграх. Водночас даний інтерфейс з'явився відносно недавно і коштує недешево. Тому застосовується він в основному в топових «материнських платах» геймерського і серверного призначення (див. «За напрямом»).

— 100 Мбіт/с. Вельми популярний у свій час стандарт, на сьогодні вважається застарілим — у світлі поширення більш швидких версій LAN. Зустрічається вкрай рідко, в основному в окремих бюджетних платах.

Кількість LAN портів

Кількість мережевих портів LAN, передбачене в конструкції материнської плати.

Детальніше про самих роз'ємах див. «LAN (RJ-45)». Тут же відзначимо, що для повсякденного дротового доступу до Інтернету або локальної мережі цілком достатньо одного LAN. Однак зустрічаються материнські плати, оснащені двома і більше такими портами. В основному це висококласні рішення — геймерські, оверклокерські, HEDT і серверні (див. «За напрямом»); в окремих моделях кількість роз'ємів даного типу досягає 5. Подібне оснащення помітно розширює мережеві можливості комп'ютера. Наприклад, воно дозволяє підключати ПК до кількома Інтернет-провайдерів; використовувати окремі роз'єми для Інтернету і локальної мережі, розділяючи трафік і підвищуючи швидкість роботи; застосовувати комп'ютер в ролі маршрутизатора або навіть файрволла на вході в локальну мережу, пропускаючи через нього весь вхідний і вихідний трафік і контролюючи його; і т. п.

LAN контролер

Модель LAN-контролера, встановленого в материнській платі.

LAN-контролер забезпечує обмін даними між платою і мережевим портом (портами) комп'ютера. Відповідно, від характеристик цього модуля залежать як спільні характеристики, так і окремі особливості мережевого функціоналу «материнки»: підтримка спеціальних технологій, якість з'єднання при нестабільній зв'язку і т. п. Знаючи модель LAN-контролера, можна знайти детальні дані по ньому — в тому числі практичні відгуки; ця інформація рідко потрібно пересічному користувачеві, однак вона може згодитися ентузіастам онлайн-ігор, а також для деяких специфічних завдань.

У світлі цього модель LAN-контролера уточнюється в основному в тих випадках, якщо це досить прогресивне рішення, помітно перевершує стандартні моделі. Такі рішення у наш час випускаються в основному під брендами Intel (середній рівень), Realtek (відносно прості моделі), Aquntia та Killer (в основному прогресивні рішення).

USB 2.0

Кількість роз'ємів USB 2.0, встановлених на задній панелі материнської плати.

Нагадаємо, USB є найпопулярнішим сучасним роз'ємом для підключення різної зовнішньої периферії — від клавіатур і мишей до спеціалізованого обладнання. А USB 2.0 — це найстаріша з актуальних на сьогодні версій даного інтерфейсу; вона помітно поступається більш нової USB 3.2 як по швидкості (до 480 Мбіт/с), так і по потужності живлення і функціоналом. З іншого боку, навіть таких характеристик нерідко буває достатньо для невибагливої периферії (на кшталт тих же клавіатур/мишей); а пристрою більш нових версій цілком можна підключати до роз'ємам цього стандарту — вистачило б потужності живлення. Так що дана версія USB все ще зустрічається в сучасних материнських платах, хоча нових моделей з роз'ємами USB 2.0 випускається все менше.

Відзначимо, що крім роз'ємів на задній панелі, USB-підключення можуть забезпечувати і конектори на самій платі (точніше, порти на корпусі ПК, приєднані до таких конекторів). Детальніше про це див. нижче.

USB 3.2 gen1

Кількість власних роз'ємів USB 3.2 gen1, передбачених на задній панелі материнської плати. В даному випадку маються на увазі традиційні, повнорозмірні порти типу USB A.

Версія USB 3.2 gen1 (раніше відома як USB 3.1 gen1 і USB 3.0) є безпосередньою спадкоємицею і подальшим розвитком інтерфейсу USB 2.0. Основними відмінностями є збільшена в 10 разів максимальна швидкість передачі даних — 4,8 Гбіт/с — а також більш висока потужність живлення, що важливо при підключенні декількох пристроїв до одного порту через розгалужувач (хаб). При цьому до такого роз'єму можна підключати периферію і інших версій

Чим більше роз'ємів передбачене в конструкції — тим більше периферійних пристроїв можна підключити до материнці без використання додаткового обладнання (USB-пристроїв). На ринку можна зустріти плати, мають на задній панелі понад 4 портів USB 3.2 gen1. При цьому відзначимо, що крім роз'ємів на задній панелі, USB-підключення можуть забезпечувати і конектори на самій платі (точніше, порти на корпусі, приєднані до таких конекторів). Детальніше про це див. нижче.

USB 3.2 gen2

Кількість власних роз'ємів USB 3.2 gen2, передбачених на задній панелі материнської плати. В даному випадку маються на увазі традиційні, повнорозмірні порти типу USB A.

Версія USB 3.2 gen2 (раніше відома як USB 3.1 gen2 і просто USB 3.1) є подальшим розвитком USB 3.2 після версії 3.2 gen1 (див. вище). Цей стандарт забезпечує швидкість підключення до 10 Гбіт/с, а для живлення зовнішніх пристроїв в таких роз'ємах може передбачатися технологія USB Power Delivery (див. нижче), що дозволяє видавати до 100 Вт на пристрій (втім, підтримка Power Delivery не є обов'язковою, її наявність варто уточнювати окремо). Традиційно для стандарту USB, даний інтерфейс зворотно сумісний з попередніми версіями — простіше кажучи, до такого порту можна без проблем підключити пристрій з підтримкою USB 2.0 або 3.2 gen1 (хіба що швидкість роботи буде обмежуватися можливостями більш повільної версії).

Чим більше роз'ємів передбачене в конструкції — тим більше периферійних пристроїв можна підключити до материнці без використання додаткового обладнання (USB-пристроїв). В окремих моделях материнських плат кількість портів даного типу становить 5 і навіть більше. При цьому відзначимо, що крім роз'ємів на задній панелі, USB-підключення можуть забезпечувати і конектори на самій платі (точніше, порти на корпусі, приєднані до таких конекторів). Детальніше про це див. нижче.

USB C 3.2 gen1

Кількість роз'ємів USB-C версії 3.2 gen1, передбачених на задній панелі материнської плати.

USB-C являє собою відносно новий тип роз'єму, що застосовується як в портативній техніці, так і в настільних ПК. Він має невеликі розміри і зручну двосторонню конструкцію, завдяки якій можна вставити штекер в роз'єм будь-якою стороною. А версія підключення 3.2 gen1 (раніше відома як USB 3.1 gen1 і USB 3.0) дозволяє працювати на швидкостях до 4,8 Гбіт/с. Крім того, при використанні цієї версії з роз'ємом USB-C в такому порте можна реалізувати технологію USB Power Delivery, що дозволяє подавати на зовнішні пристрої живлення потужністю до 100 Вт (хоча далеко не кожен порт USB-C 3.2 gen1 на материнських платах підтримує Power Delivery).

Що стосується кількості, то в сучасних материнських платах майже не зустрічається більше одного USB роз'єму C 3.2 gen1. Це пов'язане з двома моментами. По-перше, для настільних ПК випускається не так багато периферії зі штекером USB-C — більш популярні все ж повнорозмірні USB A; по-друге, багато виробників віддають перевагу портів USB з більш прогресивних версій — 3.2 gen2 і 3.2 gen2x2 (див. нижче). Також відзначимо, що крім роз'ємів на задній панелі, USB-підключення можуть забезпечувати і конектори на самій платі (точніше, порти на корпусі, приєднані до таких конекторів). Детальніше про це див. нижче.

USB C 3.2 gen2

Кількість роз'ємів USB-C 3.2 gen2, передбачених на задній панелі материнської плати.

USB-C являє собою відносно новий тип роз'єму, що застосовується як в портативній техніці, так і в настільних ПК. Він має невеликі розміри і зручну двосторонню конструкцію, завдяки якій можна вставити штекер в роз'єм будь-якою стороною. А версія підключення 3.2 gen2 (раніше відома як USB 3.1 gen2 і USB 3.1) здатна працювати на швидкостях до 10 Гбіт/с і підтримує технологію USB Power Delivery, що дозволяє подавати на зовнішні пристрої живлення потужністю до 100 Вт. Втім, наявність Power Delivery варто уточнювати окремо, ця функція не є обов'язковою.

Що стосується кількості, то найчастіше подібний порт один, лише поодинокі моделі «материнок» мають два роз'єму USB-C 3.2 gen2. Пов'язано це з тим, що для настільних ПК випускається не так багато периферії зі штекером USB-C — більш популярні все ж повнорозмірні USB A. Також відзначимо, що крім роз'ємів на задній панелі, USB-підключення можуть забезпечувати і конектори на самій платі (точніше, порти на корпусі, приєднані до таких конекторів). Детальніше про це див. нижче.

USB C 3.2 gen2x2

Кількість роз'ємів USB З 3.2 gen2х2, передбачених на задній панелі материнської плати.

USB З є відносно новий тип роз'єму, що застосовується як у портативній техніці, наприклад і в настільних ПК. Він має невеликі розміри та зручну двосторонню конструкцію, завдяки якій штекер можна вставити у роз'єм будь-якою стороною. А версія підключення 3.2 gen2 (раніше відома як просто USB 3.2) забезпечує швидкість передачі даних до 20 Гбіт/с і підтримує технологію USB Power Delivery, що дозволяє подавати на зовнішні пристрої живлення потужністю до 100 Вт. Втім, наявність Power Delivery варто уточнювати окремо, ця функція не обов'язкова.

Щодо кількості, то найчастіше подібний порт у сучасних «материнках» один. Пов'язано це перш за все з тим, що для настільних ПК випускається не наприклад багато периферії зі штекером USB З - популярніші все ж таки повнорозмірні USB A. Крім того, сама версія USB 3.2 gen 2x2 з'явилася відносно недавно і лише набирає популярності.

USB4

Кількість роз'ємів USB-C 3.2 gen3х2 (USB4), передбачених на задній панелі материнської плати.

Пропускна здатність інтерфейсу досягає вражаючого показника до 40 Гбіт/с (у двосмуговому режимі). Як і раніше версія підключення 3.2 gen3x2 підтримує технологію USB Power Delivery, що дає змогу подавати на зовнішні пристрої живлення потужністю до 100 Вт. Також інтерфейс має зворотну сумісність із попередніми специфікаціями USB.

PS/2

Кількість портів PS/2, передбачених у конструкції материнської плати.

PS/2 являє собою спеціалізований порт, призначений для підключення виключно клавіатур і/або мишей. Традиційна конфігурація «материнки» для ПК передбачає 2 таких порти для клавіатури (зазвичай виділяється бузковим кольором) і для миші (зеленим). Однак зустрічаються плати з одним роз'ємом, до якого можна підключити будь-який з цих видів периферії, на вибір. У будь-якому разі наявність PS/2 може позбавити користувача від необхідності займати під клавіатуру/мишу порти USB; це особливо корисно, якщо доведеться мати справу з великою кількістю іншої USB-периферії. З іншого боку, з низки причин цей роз'єм вважається застарілим і використовується все рідше; а PS/2-периферія випускається переважно у вигляді USB-пристроїв, які додатково укомплектовані адаптерами PS/2.

Інтерфейс Thunderbolt

Кількість і версія (останні версії v3, v4) роз'ємів Thunderbolt, передбачених на задній панелі материнської плати.

Thunderbolt — це багатофункціональний інтерфейс, який поєднує можливості PCI-E і DisplayPort і позиціонується як заміна одночасно універсальним роз'ємам на зразок USB і відеоінтерфейсам на зразок HDMI. Ось основні версії цього інтерфейсу:

— v1. Перша версія Thunderbolt, представлена на ринку. Забезпечує пропускну спроможність до 10 Гбіт/с. Використовує роз'єм, ідентичний miniDisplayPort і може використовуватися для підключення моніторів з оригінальним miniDisplayPort (якщо відповідні програмні можливості передбачені в системі).

— v2. У другій версії Thunderbolt пропускна здатність збільшена вдвічі — до 20 Гбіт/с — що дає розширені можливості по роботі з великими об'ємами даних (такими, як 4K-відео). Апаратний роз'єм при цьому залишився тим же, що і в попередній версії.

— v3. Подальше поліпшення Thunderbolt, що забезпечує швидкість до 40 Гбіт/с — цього достатньо для одночасної роботи двох 4K-моніторів. Ще одна ключова відмінність від попередніх версій полягає в тому, що v3 працює через роз'єм USB Type C (див. вище) — аж до того, що в багатьох материнських платах один і той самий роз'єм відповідає і за підключення по Type C, і за інтерфейс Thunderbolt. При цьому і сам Thunderbolt v3 має ряд функцій, аналогічни...х USB — зокрема, живлення підключених пристроїв (до 100 Вт) прямо через основний кабель.

— v4. Найновіша (на кінець 2020 року) версія даного інтерфейсу, представлена ​​влітку цього ж року. Також використовує роз'єм USB-C. Формально максимальна пропускна здатність залишилася тією ж, що і у попередника - 40 Гбіт / с; проте завдяки ряду поліпшень фактичні можливості підключення помітно розширилися. Так, Thunderbolt v4 дає змогу транслювати сигнал одночасно на два 4K-монітори (як мінімум) і забезпечує швидкість передачі даних за стандартом PCI-E не нижче ніж 32 Гбіт/с (проти 16 Гбіт/с в попередній версії). Крім того, цей інтерфейс за замовчуванням взаємно сумісний з USB4, а функція daisy chain доповнена можливістю підключення хабів, що мають до 4 портів Thunderbolt v4. З інших особливостей можна відзначити захист від атак типу DMA (direct memory access).

Підтримка Alternate Mode

Підтримка режиму Alternate Mode роз'ємом (роз'ємами) USB-C, передбаченими на задній панелі материнської плати.

Ця особливість означає, що через такий роз'єм може реалізовуватися не тільки інтерфейс USB, але й інші типи підключення (зокрема передача відео через USB-C). Конкретний набір підтримуваних інтерфейсів (так само як і число портів з Alternate Mode) варто уточнювати окремо. Найбільш характерним прикладом є Thunderbolt v3 (див. «Інтерфейс Thunderbolt»): дана версія за визначенням працює через апаратний роз'єм USB-C. В специфікацію Thunderbolt входить також підтримка DisplayPort, однак цей відеовихід може реалізовуватися через Alternate Mode і самостійно, без функціоналу Thunderbolt. Також в список інтерфейсів, які можуть підтримуватися такими портами, входить HDMI, включаючи «мобільну» версію MHL; остання, втім, в материнських платах для настільних ПК зустрічається вкрай рідко.

Підтримка Power Delivery

Підтримка технології Power Delivery хоча б одним портом USB-C материнської плати (зазвичай ця функція передбачається саме в подібних портах).

Технологія Power Delivery призначена для того, щоб збільшити потужність живлення, що подається через порти USB; роз'єм із цією функцією здатний видавати на зовнішній пристрій до 100 Вт потужності. Це може стати в нагоді як для живлення «ненажерливої» периферії, для якої недостатньо стандартної потужності USB-портів, так і для зарядки батарей у смартфонах й інших гаджетах — досить багато портативних пристроїв використовують саме Power Delivery як технологію швидкої зарядки. А як приклад зовнішньої периферії, яка живиться таким чином, можна навести монітори, що підключаються з використанням Alternate Mode — деякі з них працюють без зовнішніх джерел живлення.

COM-порт

Також відомий як RS-232C. Першопочатково застосовувався для підключення різної периферії (зокрема, модемів і мишей), проте у зв'язку з поширенням USB практично втратив цю функцію. Водночас роз'ємами цього типу продовжують оснащуватися різні спеціалізовані пристрої — зокрема, ДБЖ, касове обладнання і навіть телевізори, де він використовується в ролі керуючого порту. Тому і материнські плати з COM-інтерфейсом все ще зустрічаються у продажу.

BIOS FlashBack

У материнських платах із підтримкою BIOS FlashBack передбачається можливість прошити або відновити BIOS без процесора, відеокарти та пам'яті. Основна мета функції — забезпечення користувачам можливості оновлення BIOS у випадках, коли поточна версія несумісна із встановленим процесором або іншими компонентами комп'ютера, що може призвести до неможливості запуску системи. Як правило, у материнській платі для цього передбачається USB-роз'єм під флешку та спеціальна кнопка (зазвичай з маркуванням BIOS Flashback) – її натискання ініціює процес оновлення.

Окремим рядком відзначимо, що функція BIOS FlashBack може називатися по-різному залежно від виробника: у материнських платах від ASRock та Asus – BIOS FlashBack, від Gigabyte – Q-Flash Plus, від MSI – Flash BIOS тощо.

Clear CMOS

Перемичка на материнській платі для скидання пам'яті BIOS до заводських установок. Її наявність буде доречною при виникненні збоїв у роботі комп'ютера - коли він просто не включається або зависає на стадії включення, при цьому зайти в BIOS і скинути налаштування через нього неможливо.

Зазначимо, що перемичка Clear CMOS часто позначається іншими подібними абревіатурами: clr cmos, clear cmos jumper, Clear RTC і т.п.

Основний роз'єм живлення

Тип роз'єму, службовця для підключення до материнської плати до блока живлення (БЖ) — внутрішньому, передбаченому в корпусі комп'ютера, або зовнішнім.

— 24-контактний. Використовується для з'єднання з БЖ, встановленому в корпусі комп'ютера. Стандартний роз'єм для більшості сучасних материнських плат. Частково сумісний з більш старим 20-контактним конектором (див. нижче), однак в деяких випадках (насамперед при великій споживаної потужності) можуть виникати проблеми, тому сумісність у цьому разі варто уточнювати окремо для кожної конкретної «материнки».

— 20-контактний. Застаріла різновид роз'єму живлення, що застосовується в основному в ранніх моделях материнських плат; в сучасні моделі практично не встановлюється. Частково сумісний з більш новим 24-контактним роз'ємом, але є деякі нюанси; на практиці стоїть окремо уточнювати сумісність кожної конкретної 20-контактної плати з 24-контактним БЖ.

Роз'єм для зовнішнього БЖ. Роз'єм для підключення зовнішнього блока живлення. Зустрічається переважно в компактних материнських платах форм-факторів (див. вище), призначених для відповідної техніки — HTPC, ноутбуків і т. ін.; саме в такій техніці блок живлення часто виноситься за межі корпусу, щоб зменшити загальні габарити пристрою.

— 24+24+24-контактний. Варіант, що передбачає відразу три 24-контактних роз'єму. Зустрічається у висококласних «материнських платах, розрахованих на підключення великої кільк...ості комплектуючих і вимагають високої потужності живлення — зокрема, деяких моделях для майнінг (див. «За напрямом»).

— ATX12VO. Найбільш новий з актуальних на сьогодні роз'ємів живлення, представлений в 2020 році. Ключовою особливістю цього стандарту є те, що з БЖ на плату подається тільки напруга до 12 В — у відміну від попередніх стандартів (які є різновидами оригінального ATX), де з блока живлення надходили також напруги 3,3 В і ±5 Ст. Відповідно, живлення на більш низьковольтні компоненти системи розподіляється виключно засобами самої «материнки»; а для підключення ЖИВЛЕННЯ використовується зменшений роз'єм всього на 10 контактів. Ключовими перевагами ATX12VO є зменшення дротів в корпусі і можливість реалізації через материнську плату деяких специфічних функцій, що стосуються управління живленням і економії енергії. А слабка поширеність цього стандарту зумовлена в основному тим, що з'явився він лише нещодавно.

Живлення процесора

Тип роз'єми для живлення процесора, встановленого на материнській платі.

У більшості сучасних плат використовується 4-контактний роз'єм, на нього ж розраховане і більшість блоків живлення в корпусах стандарту ATX. Крім цього, зустрічаються й інші типи роз'ємів живлення, всі вони мають парне число контактів — 2, 6 або 8. Двухконтактное живлення застосовується в основному в материнках мініатюрних форм-факторів на кшталт thin mini-ITX, розрахованих на процесори з низьким енергоспоживанням. 8-контактні роз'єми, навпаки, призначені для живлення найбільш потужних сучасних процесорів. Вважається, що такий роз'єм забезпечує стабільне живлення і більш точне налаштування його параметрів. А ось роз'єми на 6 контактів окремо не зустрічаються, вони зазвичай доповнюють 8-контактні роз'єми у високопродуктивних платах, зокрема, геймерських.

Також відзначимо, що деякі плати мають 2 або навіть 3 роз'єми живлення — найчастіше у форматі 8+4, 8+8 і 8+8+6 контактів. Такий функціонал розрахований на висококласні CPU з високою потужністю і енергоспоживанням, для яких одного роз'єми мало. Зустрічається і інший специфічний варіант — «материнки» без окремого живлення процесора: це моделі, оснащені вбудованим CPU, який отримує ен...ергію через власні схеми плати без спеціального роз'єми живлення.

Роз'ємів живлення кулерів

Кількість роз'ємів для живлення кулерів і вентиляторів, передбачених у материнській платі. До такого роз'єму зазвичай підключається кулер процесора, також від «материнки» можуть живитися вентилятори інших компонентів системи — відеокарти, корпусу тощо; іноді це зручніше, ніж тягнути живлення безпосередньо від БЖ (як мінімум можна зменшити кількість дротів в корпусі). Зазвичай сучасні плати оснащуються 4 і більше роз'ємами цього типу.

CPU Fan 4-pin

Чотирьохпіновий роз'єм, який використовується для підключення вентилятора системи охолодження процесора. Перший контакт в ньому відповідає проводу кулера чорного кольору-він є "землею" або мінусом Джерела живлення. Другий контакт-це плюс Джерела живлення (жовтий або червоний провід кулера). Третій-задіяний у вимірюванні швидкості обертання крильчатки (зелений або жовтий провід вентилятора). На четвертий контакт, відповідний синьому проводу, приходять керуючі сигнали від ШІМ-контролера для регулювання швидкості обертання кулера залежно від нагріву процесора.

CPU/Water Pump Fan 4-pin

Роз'єм на чотири контакти, що забезпечує підключення вентилятора помпи водяного охолодження. Також може використовуватися для включення додаткового кулера Системи охолодження центрального процесора.

Chassis/Water Pump Fan 4-pin

Конектор, що відповідає за підключення додаткових кулерів на благо більш кращого охолодження компонентів всередині системного блоку. Найчастіше розміщується на краях материнської плати — ближче до фронтальної сторони і стелі «системника». Виконаний за чотириконтактною схемою.

Зворотнє підключення

Материнські плати зі зворотними роз'ємами - порти для підключення накопичувачів, блоку живлення та інших компонентів у їх конструкції перенесені зі звичних місць на задню панель. Зворотне підключення дозволяє грамотно організувати кабельменджмент та навести лад з проводами всередині системного блоку. Зазначимо, що встановлення подібних материнських плат виконується у сумісні корпуси.
Підбір за параметрами
Ціна
віддо zł
Виробники
Рейтинг брендів 
Усі брендиОсновні бренди
Форм-фактор
Роз'єм (Socket)
Чипсети Intel
Чипсети AMD
Тип і слоти ОЗП
Максимальний об'єм ОЗП
Макс. частота ОЗП
Підключення накопичувачів
Роз'ємів SATA 3
Роз'ємів M.2
Роз'єми (на платі)
Роз'ємів PCI-E 1x
Роз'єми (задня панель)
Функції та можливості
Охолодження
Додатково
За роком випуску
розгорнути
Призначення
Звукова карта
LAN контролер
Швидкість LAN
Живлення процесора
Фаз живлення
Розміри плати
Очистити параметри
Моделі