Polska
Katalog   /   Turystyka i wędkarstwo   /   Wędkarstwo   /   Echosondy i plotery nawigacyjne
Echosondy i plotery nawigacyjne Lowrance 

Echosondy i plotery nawigacyjne: specyfikacje, typy, rodzaje

Rodzaj

Typ określa ogólne przeznaczenie urządzenia.

- Echosonda. Echosonda to urządzenia przeznaczone do badania zbiorników wodnych za pomocą sonaru. Zasada działania echosondy jest podobna do radaru, ale nie wykorzystuje fal radiowych, ale ultradźwięki. Pierwotnym celem takich urządzeń jest stworzenie map topograficznych dna zbiornika, określenie jego rzeźby i głębokości w różnych miejscach. Jednak oprócz tego echosondę można wykorzystać do wykrywania ryb, a przy dobrej jakości urządzenia i poprawnych ustawieniach można nawet określić przybliżoną wielkość potencjalnej ofiary.

- ploter map. Ploter nawigacyjny można opisać jako dedykowany nawigator GPS przeznaczony do użytku na wodzie i wyposażony w powiązane dodatkowe funkcje. Do takich funkcji należy chociażby praca z kierunkami (szczegółowe mapy zbiorników, wskazujące głębokości, prądy itp.); dodatkowo może zapewniać wsparcie dla służb meteorologicznych, dodatkowego wyposażenia, takiego jak radary lub specjalne czujniki nawigacyjne itp. Zauważ, że odbiornik GPS może być wbudowany lub zewnętrzny; Aby uzyskać szczegółowe informacje, patrz „Dane techniczne plotera nawigacyjnego”.

- echosonda-ploter map. Modele łączące możliwości obu opisanych powyżej typów w jednym urządzeniu. Takie urządzenia są jednak najbardziej wszechstronne i odpowiednio kosztują.

- Echosonda-flasher. Specyficzny t...yp echosondy, stworzony specjalnie do użytku w jednym miejscu, bez ruchu. Początkowo tego typu urządzenia były generalnie opracowywane do łowienia z przerębli zimą – choć nie ogranicza się to do łowienia ryb – latem używa się flasherów, w tym na wodach otwartych podczas łowienia z łodzi. Takie urządzenia z definicji mogą wyświetlać ryby w czasie rzeczywistym (patrz „Funkcje”), jednak zamiast tradycyjnego ekranu zastosowano okrągły wskaźnik, dzięki któremu użytkownik może określić kierunek do wykrytego obiektu. A możliwości tego obiektu (a dokładniej odbity od niego sygnał) można określić na podstawie koloru znaku na wskaźniku: na przykład czerwony znak odpowiada silnemu sygnałowi, żółty do średniego, zielony do słabego. Kolejną zaletą flashera nad tradycyjną echosondą jest wysoka czułość, która pozwala na śledzenie nawet małych przynęt. Dzięki temu takie urządzenia cieszą się dużą popularnością wśród wędkarzy, jednak nie są tanie.

Głębokość skanowania

Maksymalna głębokość, na której lokalizator echosondy (patrz „Typ”) może działać skutecznie – innymi słowy, jak głęboko pod wodą urządzenie jest w stanie „widzieć”.

Warto dobrać echosondę do tego parametru biorąc pod uwagę rzeczywiste głębokości, na których planuje się jej użycie. Oczywiście nie lokuje pewnego zapasu, jednak w rozsądnych granicach (15-20%, nie więcej). Na przykład nie ma sensu specjalnie brać modelu o głębokości skanowania 200 m dla jeziora z dołami 30-40 m - takie urządzenia są drogie, podczas gdy po prostu nie ma gdzie wykorzystać ich pełnego potencjału i silnego sygnału może również odstraszać ryby. Ale w przypadku zastosowań morskich lub oceanicznych może być potrzebna głębokość kilometra lub więcej; najbardziej zaawansowane echosondy są w stanie to zapewnić.

Liczba wiązek promieniowania

Liczba oddzielnych wiązek promieniowania emitowanych podczas pracy urządzenia z funkcją echosondy (patrz „Typ”). Ogólna zasada jest następująca: im więcej promieni, tym bardziej zaawansowane jest urządzenie i tym więcej dodatkowych możliwości daje. Specyficzne możliwości mogą być następujące:

- 1. Echosonda jednowiązkowa to najprostsza odmiana; w związku z tym jedną z ich kluczowych zalet jest niski koszt. Z drugiej strony, wady każdej wiązki – zarówno wąskiej, jak i szerokiej – są w nich w pełni realizowane (więcej szczegółów w rozdziale „Ogólny kąt promieniowania”) i nie ma mowy o dokładnym określeniu położenia wykrytego osobnika. obiekty (na przykład ryby).

- 2. W modelach z dwiema wiązkami wiązki te najczęściej mają wspólną oś, ale różnią się kątem pokrycia: jedna jest wąska, bezpośrednio do pomiaru głębokości, druga – szersza, do wyszukiwania ryb i innych pojedynczych obiektów . Tak więc ta opcja łączy w sobie zalety belek o dużej i małej szerokości. Co prawda taka echosonda nie jest w stanie ustalić położenia ryby względem łodzi.

- 3. Trzy drogowe sygnalizatory echo już wszystkie możliwości tych dwupromieniowe opisano powyżej, a ponadto są one również w stanie określić położenie ryb lub innego obiektu w stosunku do łodzi (w prawo lub do lewo).

Liczba częstotliwości

Liczba indywidualnych częstotliwości promieniowania, przy których może działać urządzenie z funkcją echosondy (patrz „Rodzaj”).

Cechy samych częstotliwości są szczegółowo opisane poniżej, ale tutaj zauważamy, że różne modele mogą przewidywać różne opcje rozkładu częstotliwości na poszczególne wiązki (patrz „Liczba wiązek promieniowania”). Tak więc w niektórych urządzeniach każda wiązka ma swoją własną częstotliwość, w innych poszczególne emitery można przełączać, wybierając najlepszą opcję w zależności od okoliczności sytuacji. Generalnie im większa liczba częstotliwości świadczy o większej wszechstronności, ale zauważalnie wpływa na cenę.

Częstotliwość promieniowania

Częstotliwość (częstotliwości) promieniowania, przy której może działać urządzenie z funkcją echosondy (patrz „Rodzaj”).

Im wyższa częstotliwość, tym lepsza rozdzielczość i odporność na zakłócenia urządzenia, tym lepiej nadaje się do pracy z dużymi prędkościami, jednak wpływa to na zasięg i zasięg. Przeciwnie, czujniki o niskiej częstotliwości (do 200 kHz) „sięgają” głęboko i obejmują szeroki kąt, ale są wrażliwe na zakłócenia i nie działają dobrze z małymi detalami reliefowymi i małymi przedmiotami. W związku z tym pierwsza opcja jest uważana za optymalną dla płytkich głębokości i precyzyjnych pomiarów topograficznych, a druga - dla głębokich zbiorników wodnych, a także wyszukiwania ryb i innych zadań wymagających szerokiego zasięgu.

W modelach z kilkoma wiązkami promieniowania (patrz „Liczba wiązek promieniowania”) dla poszczególnych wiązek często przewidziane są różne częstotliwości, co pozwala połączyć zalety różnych opcji w jednym urządzeniu i zrekompensować ich wady.

Całkowity kąt promieniowania

Kąt objęty przez nadajnik sonaru (lub urządzenie z tą funkcją, patrz „Typ”).

Technicznie im szerszy kąt, tym lepiej echosonda nadaje się do poszukiwania ryb i innych obiektów podwodnych. duży ślad zmniejsza prawdopodobieństwo przeoczenia produkcji. Z drugiej strony belka powinna być jak najwęższa, aby dokładnie określić głębokość. Wynika to z faktu, że głębokość zależy od maksymalnego wystającego punktu, który znajduje się pod belką; tak więc, jeśli rozmiar otworu na dole jest mniejszy niż plamka z belki, urządzenie po prostu nie zauważy tego otworu. Im mniejszy kąt (i odpowiednio rzut promienia na dno), tym mniej prawdopodobne jest takie zjawisko.

Należy jednak pamiętać, że wszystkie powyższe informacje są jednoznacznie prawdziwe tylko w przypadku echosond jednowiązkowych (patrz „Liczba wiązek promieniowania”). Ale modele wielowiązkowe z reguły łączą belki o różnych szerokościach, kompensując w ten sposób wady wąskich i szerokich kątów. W nich całkowity kąt promieniowania opisuje jedynie wymiary przestrzeni objętej urządzeniem.

Moc emitera

Moc dostarczana przez nadajnik sonaru (lub sonar-ploter, patrz Typ).

Im mocniejszy emiter, im bardziej „daleki zasięg” okazuje się urządzenie, tym większa głębokość, na której może normalnie pracować (patrz wyżej). Nie zapominaj jednak, że praktyczne możliwości echosondy zależą od wielu innych parametrów, począwszy od częstotliwości i kątów pracy (patrz wyżej) po jakość odbiornika i możliwości algorytmów przetwarzania sygnału. Ponadto różni producenci mogą wskazywać w charakterystyce różne rodzaje mocy: w niektórych przypadkach jest to moc szczytowa (moc maksymalna w chwili pojedynczego impulsu), w innych - RMS (moc skuteczna obliczona w określonym przedziale czasu i uzyskana poniżej szczytu). Dlatego możemy powiedzieć, że rola tego parametru jest zwykle czysto orientacyjna, a przy wyborze należy kierować się momentami bliższymi praktyce (na przykład ta sama głębokość skanowania).

Technologia CHIRP

Sygnalizator obsługuje technologię CHIRP.

Znaczenie tej technologii polega na tym, że echosonda używa jednocześnie kilku częstotliwości. Innymi słowy, każdy impuls składa się z kilku sygnałów, każdy z własną częstotliwością. Według twórców pozwala to poprawić jakość obrazu, zwiększyć szczegółowość (w tym na dużych głębokościach i przy dużych prędkościach), a jednocześnie zmniejszyć poziom szumów i innych zakłóceń na ekranie w porównaniu z sonarami jednoczęstotliwościowymi. Jednak modele z CHIRP są znacznie droższe.

Skanowanie boczne

Obecność funkcji skanowania bocznego w echosondzie.

Urządzenia z tą cechą są w stanie „zobaczyć” dno i obiekty podwodne nie tylko bezpośrednio pod statkiem, ale także po jego bokach. Należy pamiętać, że różne modele mogą znacznie różnić się kątem pokrycia przestrzeni bocznej. Niemniej jednak skanowanie boczne w każdym przypadku rozszerza możliwości echosondy i zapewnia dodatkowe możliwości w porównaniu ze zwykłym dnem.

Skanowanie dolne

Wsparcie dla specjalnej technologii sonaru dolnego skanowania.

„Widok” pod dnem łodzi to klasyczny tryb echosondy, który z definicji jest obsługiwany przez wszystkie modele. Jednak w normalnej pracy wiązka dźwiękowa rozchodzi się w formie stożka, a odcinek dna, który opada pod wiązką ma kształt koła. Pogarsza to dokładność i uniemożliwia uzyskanie szczegółowych obrazów. W związku z tym wielu producentów echosond opracowało specjalne technologie w celu poprawy wydajności przyrządu; Lowrance ma DSI, Hummingbird ma DI, Garmin DownVü. Niuanse tych technologii mogą się różnić, ale podstawowa zasada działania jest taka sama: wiązka sonaru zwęża się i nie przechodzi w stożek, ale w pasek. Dzięki temu rozdzielczość urządzenia jest znacznie zwiększona, na płytkich głębokościach taka echosonda może „prześledzić” nawet pojedyncze łodygi glonów, umożliwiając odróżnienie podwodnych zarośli od ławic ryb. Niektóre modele łączą wąską wiązkę z klasycznym stożkiem, aby jeszcze bardziej zwiększyć możliwości wykrywania. Jednak takie urządzenia nie są tanie.

Cyfrowe przetwarzanie danych

Obecność cyfrowego systemu przetwarzania danych (DSP) w konstrukcji echosondy.

Przetwarzanie cyfrowe umożliwia rozdzielenie odbieranego sygnału na obcy szum i przydatne dane. Oczywiście podział ten nie jest w 100% dokładny; jednak poziom szumu w filtrowanym sygnale jest nadal znacznie zmniejszony, a ekran otrzymuje maksimum przydatnych informacji i minimum obcych informacji. Wada tej funkcji jest tradycyjna: echosondy z DSP są nieco droższe niż konwencjonalne.

Wyświetlacz

- Przekątna ekranu. Przekątna ekranu w calach. Im większy ekran, tym więcej informacji można na nim wyświetlić i tym bardziej szczegółowe mogą być te informacje. Z drugiej strony parametr ten ma zauważalny wpływ na gabaryty urządzenia, a duże ekrany są drogie, zwłaszcza że do normalnej jakości obrazu wymagana jest odpowiednia rozdzielczość (patrz niżej).

- Dotykowy. Obecność czujnika w konstrukcji wyświetlacza. Funkcja ta pozwala sterować urządzeniem poprzez dotykanie ikon na ekranie - podobnie jak to się robi w smartfonach i tabletach. Sterowanie dotykowe daje większe możliwości niż klasyczne, za pomocą przycisków i przełączników, ponadto jest bardziej intuicyjne – jednak takie urządzenia są droższe.

- Rozdzielczość wyświetlacza. Rozmiar wyświetlacza w punktach (pikselach) w poziomie i pionie. Im wyższa rozdzielczość, tym bardziej szczegółowy obraz może być wyświetlany na ekranie, tym mniejsze obiekty są na nim wyraźnie widoczne i tym wygodniej jest oglądać. Jednocześnie specyfika echosond jest taka, że zbyt wysoka rozdzielczość nie jest wymagana nawet w przypadku modeli z wyższej półki: np. skromne jak na standardy smartfony lub tablety 640x480 z ekranem 5” są uważane za całkiem wystarczające nawet dla zaawansowane urządzenie.

- Chromatyczność. Zdolność ekranu do wyświetlania kolorów. W tym przypadku stosuje się najprostszy podział:

Monochromatyczny. Wyświetlacze wyświetlające informacje tylko w odcieniach jednego koloru. Teoretycznie główny kolor może być dowolny, ale w tym przypadku bezwzględna większość ekranów monochromatycznych to czarno-białe. Ich zaletami są niskie koszty i zużycie energii, a także dobra widoczność w słońcu; jednocześnie taki obraz pozwala na pracę z dość różnymi typami danych, co jest wystarczające nawet dla bardzo zaawansowanych echosond (patrz „Typ”). Jednak ta różnorodność nie jest tak szeroka jak w przypadku kolorowych wyświetlaczy, przez co dla ploterów nawigacyjnych (patrz ibid.) taki obraz jest słabo dopasowany - jeśli nie można wyświetlić różnych kolorów, niektóre ważne informacje na temat mapy są stracone.

Kolorowe. Ekrany zdolne do obsługi wielu kolorów. Różnorodność kolorów może być dość niewielka, ale obraz nadal okazuje się bardziej informacyjny niż czarno-biały: różne kolory mogą wskazywać na różne głębokości na mapie, zmiany temperatury wody itp. Z tego powodu ten typ wyświetlacza znajduje się we wszystkich typach urządzeń nawigacyjnych (patrz wyżej). Jego główną wadę można nazwać wyższym kosztem niż ekrany monochromatyczne.

- Podświetlenie. Ekran posiada własny system podświetlenia. Funkcja ta uniezależnia wyświetlacz od światła zewnętrznego i pozwala widzieć na nim informacje nawet w całkowitej ciemności. Jednocześnie podświetlenie zwiększa zużycie energii, co jest ważne podczas długotrwałej pracy z autonomicznego źródła (na przykład akumulatora łodzi). Dlatego można go wyłączyć.

Funkcje

- Mapy 3D. Obsługa map renderowanych z grafiką 3D. Zapewnia to dodatkową przejrzystość w pracy: relief na ekranie widać nie w postaci konwencjonalnych linii i plam barwnych, ale w postaci wypukłości i zagłębień, których kształt jest najbardziej zbliżony do rzeczywistego kształtu powierzchni. W takim przypadku trójwymiarowy obraz można uzupełnić o wskaźnik koloru i/lub liczbowe w celu wyjaśnienia dodatkowych danych (np. określonych wartości głębokości). Funkcja ta jest typowa dla modeli z wyższej półki z funkcją plotera nawigacyjnego (patrz „Typ”).

- Alarm dźwiękowy. Obecność sygnalizacji dźwiękowej w konstrukcji urządzenia. Rodzaje alarmów i sytuacje ich wyzwalania mogą być różne: wykrycie ryb, krytyczny spadek głębokości (patrz „Płytka woda / mielizna” poniżej), dotarcie do punktu kontrolnego, człowiek za burtą(patrz poniżej) itp. Jednak w każdym przypadku tego typu powiadomienie jest bardziej niezawodne niż wskaźnik graficzne na ekranie – aby usłyszeć dźwięk, użytkownik nie musi patrzeć na urządzenie. To znacznie zmniejsza ryzyko pominięcia ważnej wiadomości.

- Określenie odległości do ryby. Możliwość określenia odległości do ryb wykrytych przez echosondę. Z reguły mówimy o odległości na głębokości, a samo wskaźnik można przeprowadzić na różne sposoby: w niektórych modelach ślady ryb są wyświetlane naprzeciw skali gł...ębokości, w innych można wyświetlić konkretną wartość dla każdego znaku osobno .

- Wskaźnik symboli w postaci ryb. Możliwość wyświetlenia na ekranie sygnału od ryby wykrytej przez echosondę w postaci w rzeczywistości ikon „ryb”. Ta opcja jest lepsza dla nieprofesjonalnych użytkowników niż standardowe ikony w postaci łuków o różnych kształtach: praca z łukami wymaga pewnej praktycznej wiedzy, aby odróżnić ryby od innych źródeł sygnału, a w przypadku ryb to zadanie jest rozwiązane za użytkownika przez samo urządzenie. Oczywiście żaden taki system nie jest doskonały, a zatem fałszywe alarmy nie są wykluczone; z drugiej strony technologie rozpoznawania są stale ulepszane. Wiele echosond z tą funkcją ma nawet gradację w zależności od wielkości ofiary - duża, średnia, mała.

- Wskaźnik ryb w czasie rzeczywistym. W urządzeniach z tą funkcją sygnały od ryb są wyświetlane na ekranie, gdy ryba wejdzie w wiązkę sonaru - i znikają, gdy opuści wiązkę. Dzięki temu możliwe jest jak najszybsze śledzenie ruchów potencjalnej zdobyczy i ocena perspektyw konkretnej lokalizacji - podczas gdy modele bez wskazań w czasie rzeczywistym wyświetlają stale znaczniki po wykryciu ryby i utrudniają ocenę jej ruchów.

- Szybkie odświeżanie ekranu. Szybkość aktualizacji ekranu echosondy określa, jak równomiernie rysowany jest relief „widoczny” przez urządzenie na tym ekranie. Parametr ten jest ważny podczas jazdy z dużą prędkością: jeśli ekran odświeża się powoli, istnieje duże prawdopodobieństwo pojawienia się „kroków” z ostrymi spadkami - ze względu na to, że urządzenie nie miało czasu na przetwarzanie i wyświetlanie danych na poprzeczna sekcja dolna. Przez „szybką” aktualizację rozumiemy taki tryb, który pozwala wygodnie korzystać z echosondy z dużą prędkością; konkretne wartości tej prędkości mogą różnić się od różnych producentów, jednak z reguły mówimy o co najmniej 30-40 km/h, opracowanych przez potężne łodzie motorowe.

- Płytka woda / mielizna. Funkcja ta zapewnia alarm o krytycznym spadku głębokości, obarczonym uziemieniem ze wszystkimi odpowiednimi nieprzyjemnymi konsekwencjami. Głębokość, na której uruchamiany jest alarm, można najczęściej ustawić na życzenie użytkownika.

- Automatyczna zmiana skali głębokości. Automatyczne powiększanie obrazu na ekranie w zależności od głębokości „widzianej” przez echosondę. Funkcja ta dostosowuje ekran urządzenia tak, aby cała zeskanowana objętość wody od powierzchni do dna była na nim w pełni widoczna, a do oceny sytuacji nie było konieczne przesuwanie obrazu w górę i w dół. Np. na głębokości 35-40 m model z autoprzeskalowaniem może korzystać ze skali 50-metrowej, a przy głębszych głębokościach może przełączyć się na 80 lub 100 metrów, na mniejsze - na skalę 20-metrową itp. Jednocześnie automatyczna regulacja „ułatwia życie” użytkownikowi, eliminując konieczność ręcznego przestawiania wagi.

- Zakres wyświetlanej głębokości. Możliwość ręcznego ustawienia dla urządzenia określonego zakresu głębokości pokazywanego na wyświetlaczu – dzięki czemu przestrzeń powyżej i poniżej tego zakresu będzie poza ekranem. Funkcja ta może być przydatna na przykład do wyszukiwania ryb spacerujących w określonym zakresie głębokości; jednak ograniczenie zakresu pozwala na uzyskanie obrazu w większej skali niż przy oglądaniu całej przestrzeni od powierzchni do dołu.

- Wyznaczanie gęstości dna. Możliwość wykorzystania echosondy do określenia gęstości dna. Urządzenie z tą funkcją pozwala określić, co znajduje się pod naczyniem - kamień, piasek lub miękki muł; informacje te mogą być przydatne podczas łowienia niektórych gatunków ryb. Ponadto dane o gęstości dna mogą być przydatne podczas wyszukiwania obiektów podwodnych – na przykład wraki często wyróżniają się „twardymi” punktami na miękkich powierzchniach.

- Wskaźnik temperatury wody. Możliwość wyświetlania temperatury wody na ekranie urządzenia. Konkretne cechy takiego wskazania mogą być różne: niektóre modele pokazują tylko dane o wodzie bezpośrednio stykającej się z czujnikiem (czyli w rzeczywistości temperaturę powierzchni), inne są również zdolne do wyświetlania danych na termoklinie (skok temperatury warstwa).

- Wskaźnik prędkości. Możliwość wyświetlania prędkości ruchu na ekranie urządzenia. Funkcja ta dostarcza dodatkowych informacji i może być użyteczna nawet na łodziach wyposażonych we własne prędkościomierze – uzyskanie danych o prędkości bezpośrednio na ekranie echosondy/plotera nawigacyjnego jest często wygodniejsze niż rozpraszanie się przez oddzielny przyrząd. Dane te mogą pochodzić z różnych źródeł - na przykład z modułu GPS lub ze specjalistycznego czujnika (lag).

- Wyświetlanie przebytej odległości. Możliwość wyświetlenia przebytej odległości na ekranie urządzenia. Funkcje tej funkcji mogą się różnić w zależności od modelu: w najprostszych urządzeniach pokazywana jest tylko całkowita przebyta odległość, bardziej zaawansowane (zwykle z funkcją plotera nawigacyjnego, patrz „Typ”) mogą również narysować trasę na mapie.

- Funkcja człowieka za burtą. Jak sama nazwa wskazuje, funkcja ta ułatwia prowadzenie akcji ratowniczych w przypadku wypadnięcia osoby za burtę. Specyficzna funkcjonalność z tym związana może być różna w różnych modelach, ale zazwyczaj istnieje przynajmniej możliwość szybkiego ustalenia sceny zdarzenia w urządzeniu i przełączenia go w tryb nawigacji do tego punktu. W bardziej zaawansowanych modelach można zapewnić morską łączność radiową DSC, a także odbieranie i przetwarzanie podobnych sygnałów z innych statków.

Interfejsy

-Ethernet. Ten standard jest również znany jako LAN lub RJ-45. Jego pierwotnym celem jest budowa przewodowych sieci komputerowych ogólnego przeznaczenia; jednak Ethernet może być również używany w specjalnych sieciach - m.in. używane przez sprzęt nawigacyjny. Należy pamiętać, że technicznie ten interfejs jest w stanie zapewnić wyższą szybkość przesyłania danych niż NMEA, więc może być używany do zadań wymagających dużej ilości transferu danych, na przykład łączenia się z Internetem za pośrednictwem modułu satelitarnego.

- NMEA. Skrót od National Marine Electronics Association. Interfejs ten służy do komunikowania się ze sobą różnych "morskich" urządzeń elektronicznych, głównie nawigacji - echosondy, chartplotery, radary, radio VHF, żyrokompasy, czujniki w silnikach itp. W związku z tym jego obsługa pozwala na połączenie urządzenia z innymi wyspecjalizowanymi urządzeniami i czujnikami. Zauważ, że istnieje kilka wersji NMEA. Najpopularniejszym w tej chwili jest NMEA 0183, to właśnie ten standard jest obsługiwany przez większość specjalnego sprzętu. Bardziej zaawansowaną wersją jest NMEA 2000, która nie jest jeszcze tak rozpowszechniona. Możesz dowiedzieć się więcej o różnych wersjach i ich kompatybilności w dedykowanych źródłach.

- Wyjście na zewnętrzną antenę GPS. Funkcja ta może wystąpić niezależnie od tego, czy urządzenie posiada wbudowany odbiornik G...PS (patrz wyżej). Jeśli nie ma takiego odbiornika, wówczas możliwość podłączenia anteny zewnętrznej (a dokładniej całego modułu GPS) jest prawie obowiązkowa dla urządzeń z funkcją plotera nawigacyjnego (patrz „Typ”) - w przeciwnym razie nie będą w stanie wydajnie działać ich zadania. Jednak w przypadku modeli z własnym odbiornikiem może się przydać antena zewnętrzna - jest z reguły bardziej czuła niż wewnętrzna i pozwala dokładniej określić lokalizację urządzenia, szczególnie w trudnych warunkach (zakłócenia atmosferyczne , nawigacja przez wąskie fiordy itp.). Jednocześnie taką antenę można wybrać według własnego uznania, wybierając najlepszą opcję pod względem ceny i funkcjonalności. Trzeba tylko wziąć pod uwagę, że do podłączenia zewnętrznego sprzętu można wykorzystać różne typy złączy - dlatego przed zakupem anteny warto wyjaśnić jej kompatybilność z konkretnym modelem urządzenia.

- Wi-Fi. Interfejs bezprzewodowy, pierwotnie stworzony do łączenia się z lokalnymi sieciami komputerowymi, a ostatnio również używany do bezpośredniego łączenia ze sobą różnych urządzeń. W echosondach / chartplotterach może być wykorzystywany do różnych celów - zarówno do integracji z siecią pokładową, jak i do podłączenia urządzeń zewnętrznych (czujnik bezprzewodowy, tablet do zdalnego sterowania itp.); konkretna funkcjonalność zależy od modelu.

- Bluetooth. Interfejs bezprzewodowy służący do łączenia ze sobą różnych urządzeń. Standard Bluetooth obejmuje wiele oddzielnych protokołów używanych do różnych typów danych i formatów działania; w rzeczywistości możliwości tego połączenia w każdym konkretnym przypadku zależą od protokołów obsługiwanych przez echosondę / ploter nawigacyjny. Do najczęstszych możliwości należą w szczególności podłączenie czujników bezprzewodowych (patrz wyżej), wymiana danych z tabletem, laptopem lub innym gadżetem (na przykład w celu pobrania nowych map i tras), podłączenie bezprzewodowych zestawów słuchawkowych do pracy z alarmami dźwiękowymi itp. s.

- Wejście wideo. Złącze do podłączenia zewnętrznego sygnału wideo do echosondy / chartplotera. Funkcja ta umożliwia wykorzystanie wyświetlacza do wyświetlania „obrazu” z innego urządzenia, takiego jak kamera zewnętrzna. Zwróć uwagę, że wejścia wideo znajdują się głównie w modelach z dużymi kolorowymi wyświetlaczami - bez takiego wyświetlacza całe znaczenie tej funkcji byłoby stracone.

- Wyjście wideo. Złącze do wyprowadzania sygnału wideo z echosondy / plotera nawigacyjnego. Funkcja ta pozwala na zduplikowanie obrazu z wyświetlacza urządzenia na zewnętrznym dużym ekranie - np. głównym monitorze komputera pokładowego - co sprawia, że oglądanie jest wygodniejsze.

Moduł GPS

Dostępność własnego modułu nawigacji satelitarnej GPS w urządzeniu z funkcją chartplotera (patrz „Typ”). Moduł ten odpowiada za wyznaczanie aktualnych współrzędnych geograficznych urządzenia i dlatego jest kluczowym elementem niezbędnym do efektywnej pracy z mapami. Jednocześnie istnieją plotery nawigacyjne, które nie posiadają tej funkcji – są przeznaczone do podłączenia zewnętrznego odbiornika GPS.

Obsługa GLONASS

Możliwość współpracy urządzenia z systemem nawigacji satelitarnej GLONASS.

GLONASS (GLOBAL NAVIGATION SATELLITE SYSTEM) to rosyjski system nawigacji satelitarnej pozycjonowany jako alternatywa dla GPS. Dziś jest to druga (po tym samym GPS) światowa sieć satelitarna. Jednocześnie w nowoczesnej elektronice oba systemy nie tyle konkurują ze sobą, ile się uzupełniają: obsługa GLONASS w echosondach / chartplotterach jest zwykle połączona z modułem GPS (patrz wyżej). Dzięki temu urządzenie może wyznaczać swoje współrzędne za pomocą sygnałów z dwóch sieci jednocześnie, co znacznie zwiększa dokładność pozycjonowania. Ponadto ta kombinacja zapewnia dodatkową pewność w przypadku awarii jednej z sieci.

Obsługa Galileo

Galileo to europejski system nawigacji satelitarnej zaprojektowany jako alternatywa dla amerykańskiego GPS. Zauważ, że jest pod kontrolą departamentów cywilnych, a nie wojskowych. Dzięki pełnej flocie 24 aktywnych satelitów system zapewnia dokładność do 1 m w trybie publicznym i do 20 cm z usługą GHA. Współpracując z GPS, system Galileo zapewnia dokładniejszy pomiar pozycji, zwłaszcza w gęsto zaludnionych obszarach.

Slot na kartę pamięci

Urządzenie posiada slot do pracy z wymiennymi kartami pamięci. W niektórych modelach może być więcej niż jedno z tych gniazd.

Karty pamięci są bardzo popularne w nowoczesnej przenośnej elektronice ze względu na swoją lekkość, kompaktowość i stosunkowo niski koszt. W ploterach nawigacyjnych takie nośniki można wykorzystać zarówno do rozszerzenia własnej pamięci wbudowanej urządzenia, jak i do wymiany danych z innym sprzętem - na przykład przepisywania tras do laptopa lub pobierania z niego zaktualizowanych map nawigacyjnych (patrz niżej). Należy jednak pamiętać, że istnieje wiele odmian kart pamięci, w większości przypadków niekompatybilnych ze sobą. Z drugiej strony plotery nawigacyjne zwykle korzystają z szeroko rozpowszechnionego standardu mediów – najczęściej SD lub microSD.

Mapa podstawowa

Obecność karty podstawowej w zestawie dostawy urządzenia.

Mapa podstawowa jest mapą preinstalowaną, zarejestrowaną w pamięci urządzenia. Dzięki temu ploter nawigacyjny w takiej konfiguracji może (teoretycznie) być używany „po wyjęciu z pudełka” bez instalowania dodatkowego oprogramowania. W praktyce mapy bazowe, choć mogą się różnić w zależności od modelu, producenta i regionu, najczęściej mają małą skalę, wyświetlają tylko najbardziej ogólne informacje (często nieaktualne) i nie nadają się do użytku profesjonalnego. Dlatego funkcja ta zazwyczaj nie eliminuje konieczności instalowania dodatkowych szczegółowych map (patrz niżej).

Dodawanie nowych map

Możliwość pobierania nowych map nawigacyjnych do plotera nawigacyjnego.

Ta możliwość jest niezwykle ważna z dwóch powodów. Po pierwsze, mapa bazowa (patrz wyżej) rzadko zapewnia poziom szczegółowości niezbędny do efektywnego wykorzystania - trzeba wczytać bardziej szczegółowe mapy poszczególnych obszarów. Po drugie, bardzo pożądane jest okresowe aktualizowanie nawet już załadowanych map, ponieważ informacje hydrograficzne (głębokości, prądy, mielizny, położenie toru wodnego itp.) ulegają ciągłym zmianom.

Liczba punktów trasy

Maksymalna liczba pojedynczych punktów orientacyjnych, które można zapisać w pamięci plotera nawigacyjnego.

Punkty orientacyjne mogą służyć jako baza do wytyczania tras, jako punkty odniesienia na mapie, taki punkt można ustawić jako bezpośredni cel podróży itp.; konkretne przypadki użycia zależą od modelu urządzenia. W każdym razie im więcej punktów nawigacyjnych możesz jednocześnie wprowadzić do pamięci plotera nawigacyjnego, tym wygodniej z nimi pracować i tym rzadziej będziesz musiał czyścić tę pamięć, aby dodać nowe znaczniki.

Liczba tras

Maksymalna liczba śladów, które mogą być jednocześnie przechowywane w pamięci plotera nawigacyjnego.

Jeśli musisz regularnie podróżować po stałych trasach, znacznie wygodniej jest raz zapisać te trasy w pamięci, a następnie wybrać żądaną opcję, niż za każdym razem ponownie programować nawigator. Nowoczesne urządzenia mogą przechowywać dziesiątki, a nawet setki tras; im większa jest ta liczba, tym rzadziej będziesz musiał zwalniać pamięć na nowe trasy.

Liczba punktów na trasie

Maksymalna liczba punktów orientacyjnych, które można ustawić na pojedynczej trasie zapisanej na ploterze nawigacyjnym.

We współczesnych urządzeniach liczba ta może sięgać kilkudziesięciu tysięcy. Obfitość punktów jest ważna przy układaniu skomplikowanych tras, z wieloma zakrętami i zakrzywionymi liniami, które wymagają maksymalnej dokładności. Tej liczby nie należy mylić z liczbą poszczególnych punktów trasy (patrz „Liczba punktów trasy”): w tym przypadku chodzi tylko o punkty zawarte w określonej trasie i nieużywane oddzielnie (może być ich wielokrotnie więcej).

Czujnik bezprzewodowy

Obecność czujnika bezprzewodowego w zakresie dostawy echosondy.

Główne cechy i wygoda takich czujników wynikają z nazwy: aby je zainstalować, nie trzeba bawić się układaniem i zabezpieczaniem przewodów, wystarczy zamocować moduł w wymaganym miejscu i włączyć komunikację. Z drugiej strony czujniki bezprzewodowe są znacznie droższe niż przewodowe i wymagają do działania własnych zasilaczy; stan tych źródeł (baterie lub baterie) należy monitorować oddzielnie, aby czujnik nie wyłączał się w najbardziej nieodpowiednim momencie.

Należy pamiętać, że istnieje określony typ urządzeń o podobnej funkcji: echosondy, które w ogóle nie mają wyświetlaczy i są podłączone do urządzenia mobilnego (smartfona lub tabletu) podczas pracy. Pod względem funkcjonalności takie modele często nie ustępują pełnowartościowym echosondom, a jednocześnie są znacznie tańsze.

Czujnik łowienia pod lodem

Obecność czujnika do połowów zimowych jest zawarta w dostawie urządzenia z funkcją echosondy (patrz "Typ").

Funkcja ta pozwala na używanie urządzenia na pokrytych lodem stawach. Z reguły sam czujnik jest wykonany w formie pływaka i jest przeznaczony do umieszczenia bezpośrednio w otworze. Jednocześnie niektóre modele nadal są w stanie do pewnego stopnia „widzieć” bezpośrednio przez lód, ale funkcja ta ma zwykle charakter pomocniczy i jest przeznaczona raczej do ogólnej oceny głębokości, a nie do szczegółowego przedstawienia sytuacji; a głębokość robocza przy takiej pracy okazuje się mniejsza niż standardowa. Istnieją dwa punkty wspólne dla wszystkich czujników zimowych: brak mocowań spotykanych w konwencjonalnych czujnikach (na dnie łodzi, pawęży itp.), a także zwiększona odporność na niskie temperatury.

Radio satelitarne / pogoda

Urządzenie obsługuje usługi transmisji satelitarnej i/lub prognozy pogody.

Transmisja radiowa przez satelitę jest podobna do konwencjonalnej transmisji radiowej, ale nie ma takich ograniczeń geograficznych: przy odpowiedniej liczbie repeaterów orbitalnych możliwe jest pokrycie całej powierzchni globu (choć najczęściej sieci satelitarne rozciągają się do 1 -2 części świata). Ponadto oprócz reportaży, muzyki, programów publicystycznych itp. Satelity mogą przesyłać specjalistyczne informacje meteorologiczne przeznaczone przede wszystkim dla statków morskich. Większość operatorów takich nadawania działa w formacie płatnego abonamentu.

Podświetlenie klawiszy

Obecność kluczowego systemu podświetlenia w konstrukcji urządzenia.

Rola tej funkcji jest podobna do podświetlenia wyświetlacza (patrz „Wyświetlacz”): sprawia, że klawisze są widoczne nawet w całkowitej ciemności, co pozwala na dokładne sterowanie funkcjami urządzenia. I nawet w warunkach zmierzchu podświetlenie może się przydać – nie wszystkie przyciski mają oznaczenia, które są dobrze rozróżnialne w słabym świetle.

Ochrona przed kurzem i wilgocią

Obecność ochrony przed kurzem i wilgocią w konstrukcji urządzenia.

Funkcja ta jest realizowana dzięki obudowie o odpowiedniej konstrukcji, która zapobiega wnikaniu wilgoci i brudu na wrażliwe elementy urządzenia. Jest to prawie obowiązkowe dla nowoczesnych echosond i chartplotterów (patrz „Rodzaj”), ponieważ takie urządzenia są pierwotnie przeznaczone do pracy w pobliżu wody, gdzie prawdopodobieństwo rozpryskiwania jest bardzo wysokie. Jednocześnie należy pamiętać, że określony stopień ochrony przed kurzem i wilgocią może być różny.

Do jego opisu często używa się standardu IP. Klasyczne oznaczenie dla tego standardu obejmuje dwie liczby, z których jedna odpowiada stopniowi ochrony przed kurzem i ciałami obcymi, druga - przed wilgocią (IP54). Oto najczęstsze opcje pierwszej cyfry we współczesnych urządzeniach:
  • 4 - ochrona przed przedmiotami powyżej 1 mm (większość drutów, narzędzi, śrub i gwoździ itp.)
  • 5 - pełna ochrona przed ciałami stałymi, odporność na kurz (pewna ilość kurzu może dostać się do środka, ale nie przeszkadza to w zadowalającej pracy urządzenia).
  • 6 - pełna ochrona przed wnikaniem kurzu do obudowy.
Dla drugiej cyfry opcje są następujące:
  • 4 - odporność na rozpryski wody z dowolnego kierunku;
  • 5 - odporność na strumienie wody średniej mocy z dowolnego kierunku (ochrona przed silnymi rozpryskami podczas burzy);
  • 6 - odporność na silne strumienie wody z dowolnego kierunku (ochrona przed falami m...orskimi)
  • 7 - odporność na pełne zanurzenie w wodzie na płytkiej głębokości i na stosunkowo krótki czas - ale nie mniej niż pół godziny na głębokości 1 m.
  • 8 - odporność na długotrwałe zanurzenie w wodzie na głębokość większą niż 1 m. Zdolność do pracy w stanie zanurzonym.
Specyficzną opcją jest oznaczenie jedną cyfrą i literą „X” w miejsce drugiej – oznacza to, że certyfikacja nie została przeprowadzona dla tego parametru. W przypadku echosond i ploterów nawigacyjnych „X” zwykle jest na pierwszym miejscu — na przykład IPX4. Wynika to z faktu, że odporność na kurz dla tej klasy urządzeń odgrywa drugorzędną rolę, a wielu producentów woli nie wydawać pieniędzy na certyfikację tego parametru.

Należy również powiedzieć, że odporność na kurz i wilgoć jest wskazana dla jednostki głównej urządzenia umieszczonego na pokładzie; czujniki zewnętrzne, opuszczane podczas pracy do wody, z definicji muszą być wodoodporne, więc nie wchodzą w grę w tym przypadku.

Źródło zasilania

Napięcie zasilania wymagane do normalnej pracy urządzenia. Parametr ten pozwala określić zgodność z zamierzonym źródłem zasilania.

Należy zauważyć, że zwykle ta klauzula określa pewien zakres napięcia, który zapewnia wszechstronność. Oczywiście nie można wyjść poza ten zakres: zbyt niskie napięcie może po prostu „nie uruchomić” urządzenia, a zbyt wysokie – uszkodzić elektronikę. I nawet pozornie normalna praca z „nierodzimym” napięciem (na przykład, jeśli przypadkowo zostanie podłączone nieodpowiednie źródło zasilania) nie jest w tym przypadku wskaźnikiem: tryb nienormalny w każdym razie przyspieszy awarię urządzenia , może to prowadzić do wyświetlania błędnych odczytów ...
Filtry
Cena
oddo zł
Marki
Rodzaj
Głębokość skanowania
Liczba wiązek
Całkowity kąt promieniowania
Liczba częstotliwości
Wyświetlacz
Przekątna wyświetlacza
Cechy dodatkowe
Funkcje
Interfejsy
Wyczyść parametry