Fazy zasilania
Liczba faz zasilania procesora przewidzianych na płycie głównej.
W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.
Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.
Podświetlenie LED
Obecność na płycie głównej własnego
podświetlenia LED. Funkcja ta nie wpływa na funkcjonalność płyty głównej, ale nadaje jej niecodzienny wygląd. Dlatego nie ma sensu, aby zwykły użytkownik specjalnie szukał takiego modelu (potrzebuje
płyty głównej bez podświetlenia), ale dla miłośników modowania podświetlenie może być bardzo przydatne.
Podświetlenie LED może mieć postać osobnych świateł lub pasków LED, wykonane w różnych kolorach (czasem z możliwością wyboru kolorów) i obsługiwać dodatkowe efekty - mruganie, migotanie, synchronizację z innymi komponentami (patrz „Synchronizacja podświetlenia”) itp. Specyficzne możliwości zależą od modelu płyty głównej.
Synchronizacja podświetlenia
Technologia synchronizacji przewidziana na płycie z podświetleniem LED (patrz wyżej).
Sama synchronizacja pozwala „dopasować” podświetlenie płyty głównej do podświetlenia innych elementów systemu - obudowy, karty graficznej, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać / wyłączać itp. Konkretne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoje własne (Mystic Light Sync od MSI, RGB Fusion od Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty od jednego producenta.
Maksymalna częstotliwość taktowania
Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.
W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM
1500 - 2000 MHz lub
mniej jest uważana za bardzo niską,
2000 - 2500 MHz jest skromna,
2500 - 3000 MHz jest średnia,
3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach
obsługiwane mogą być 3500 - 4000 MHz, a nawet
ponad 4000 MHz.
Maks. wielkość pamięci
Maksymalna ilość pamięci RAM, którą można zainstalować na płycie głównej.
Wybierając według tego parametru, ważne jest, aby wziąć pod uwagę planowane wykorzystanie komputera i rzeczywiste potrzeby użytkownika. Tak więc woluminy
do 32 GB włącznie wystarczą, aby rozwiązać wszelkie podstawowe problemy i wygodnie uruchamiać gry, ale bez znacznej rezerwy na aktualizację.
64 GB to optymalna opcja w wielu zastosowaniach profesjonalnych, a w przypadku zadań wymagających dużej ilości zasobów, takich jak renderowanie 3D,
96 GB, a nawet
128 GB pamięci nie będzie limitem. Najbardziej „pojemne” płyty główne są kompatybilne z wolumenami
192 GB i
więcej - są to głównie najwyższej klasy rozwiązania dla serwerów i HEDT (patrz „W kierunku”).
Możesz wybrać ten parametr z rezerwą - biorąc pod uwagę potencjalną rozbudowę pamięci RAM, ponieważ zainstalowanie dodatkowych kości RAM to najprostszy sposób na zwiększenie wydajności systemu. Biorąc ten czynnik pod uwagę, wiele stosunkowo prostych płyt głównych obsługuje bardzo duże ilości pamięci RAM.
Chłodzenie dysku SSD M.2
Wbudowane w płytę główną
chłodzenie dysków SSD >, podłączanych za pośrednictwem M. 2.
Złącze to pozwala na osiągnięcie wysokich prędkości, jednak z tego samego powodu wiele dysków SSD dla M.2 wyróżnia się wysokim rozpraszaniem ciepła i w celu uniknięcia przegrzania mogą wymagać dodatkowego chłodzenia. Najczęściej za takie chłodzenie odpowiada prosty radiator w postaci metalowej płytki – w przypadku dysku SSD to w zupełności wystarczy.
Stalowe złącza PCI-E
Obecność na płycie głównej wzmocnionych
stalowych złączy PCI-E.
Takie złącza można znaleźć głównie w gamingowych (patrz „Przeznaczenie”) i innych zaawansowanych typach płyt głównych zaprojektowanych do korzystania z wydajnych kart graficznych. Gniazda PCI-E 16x są zwykle wykonane ze stali, przeznaczone tylko dla takich kart graficznych; oprócz samego gniazda, jego mocowanie do płyty ma również wzmocnioną konstrukcję.
Ta cecha oferuje dwie kluczowe zalety w porównaniu z tradycyjnymi plastikowymi złączami. Po pierwsze, pozwala na instalację nawet dużych i ciężkich kart graficznych tak bezpiecznie, jak to możliwe, bez ryzyka uszkodzenia gniazda lub karty. Po drugie, metalowa wtyczka działa jak ekran ochronny i zmniejsza prawdopodobieństwo wystąpienia zakłóceń; jest to szczególnie przydatne w przypadku korzystania z wielu kart graficznych zainstalowanych obok siebie, "side-by-side".
Wyjście D-Sub (VGA)
Obecność na płycie głównej własnego wyjścia
D-Sub (VGA).
Takie wyjście jest przeznaczone do transmisji wideo ze zintegrowanej karty graficznej (patrz wyżej) lub procesora ze zintegrowaną grafiką (podkreślamy, że niemożliwe jest przesłanie do niego sygnału z dedykowanej karty graficznej przez chipset płyty głównej). Jeśli chodzi o VGA, jest to standard analogowy pierwotnie stworzony dla monitorów CRT. Nie wyróżnia się jakością obrazu, prawie nie nadaje się do rozdzielczości wyższych niż 1280x1024 i nie zapewnia transmisji dźwięku, dlatego jest powszechnie uważany za przestarzały. Jednak ten rodzaj wejścia jest nadal używany w samodzielnych monitorach, telewizorach, projektorach itp.; tak więc wśród płyt głównych można znaleźć modele z takimi wyjściami.
Wersja DisplayPort
Wersja interfejsu DisplayPort (patrz wyżej) zainstalowana na płycie głównej.
— v.1.2. Najstarsza z stosowanych obecnie wersji (2010 rok). To właśnie w niej po raz pierwszy pojawiła się obsługa 3D, możliwość pracy ze złączem miniDisplayPort, a także opcja szeregowego łączenia wielu ekranów do jednego portu (daisy chain). Maksymalna rozdzielczość, w pełni obsługiwana przez v.1.2 — 5K przy 30 klatkach na sekundę, z pewnymi ograniczeniami jest również obsługiwane wideo 8K. A aktualizacja v.1.2a, wprowadzona w 2013 roku, dodała kompatybilność z technologią FreeSync stosowaną w kartach graficznych AMD.
— v.1.3. Aktualizacja standardu DisplayPort wydana w 2014 roku. Dzięki zwiększonej przepustowości możliwe było zapewnienie pełnej obsługi wideo 8K (przy 30 klatkach na sekundę), a w standardach 4K i 5k zwiększenie maksymalnej liczby klatek na sekundę odpowiednio do 120 i 60 klatek na sekundę. Kolejną kluczową aktualizacją była Funkcja Dual-mode, która zapewnia kompatybilność z interfejsami HDMI i DVI za pośrednictwem najprostszych pasywnych adapterów.
— v.1.4. Najnowsza wersja z szeroko rozpowszechnionych. Przepustowość została jeszcze bardziej zwiększona (prawie o połowę w porównaniu z v.1.2, co pozwoliło, choć z pewnymi ograniczeniami, wysyłać 4K i 5K-sygnał wideo z szybkością do 240 kl./s i 8K — do 144 kl./s. Oprócz tego, dodano obsługę szeregu specjalnych funkcji, w tym HDR10, a maksymalna liczba jednocześnie przesyłanych kanałów dźwięku wzrosła do 32.