Polska
Katalog   /   Telefony i komunikacja   /   Telefony i akcesoria   /   Telefony komórkowe

Porównanie Xiaomi Redmi 13C 128 GB / 6 GB vs Poco C65 128 GB / 6 GB

Dodaj do porównania
Xiaomi Redmi 13C 128 GB / 6 GB
Poco C65 128 GB / 6 GB
Xiaomi Redmi 13C 128 GB / 6 GBPoco C65 128 GB / 6 GB
Porównaj ceny 1Porównaj ceny 17
TOP sprzedawcy
Wyświetlacz
Charakterystyka wyświetlacza
6.74 "
1600х720 (20:9)
260 ppi
IPS
90 Hz
 
Gorilla Glass
6.74 "
1600х720 (20:9)
260 ppi
IPS
90 Hz
obsługa DC Dimming
Gorilla Glass
Jasność450 – 600 nit450 – 600 nit
Stosunek wyświetlacza do obudowy84 %84 %
DCI-P3
Część sprzętowa
System operacyjnyAndroid 13Android 13
Model procesoraHelio G85Helio G85
Częstotliwość procesora2.2 GHz2 GHz
Liczba rdzeni procesora88
Ocena procesora11
GPUARM Mali-G57 MC2ARM Mali-G52 MC2
Pamięć RAM6 GB6 GB
Typ RAMLPDDR4xLPDDR4x
Pamięć wbudowana128 GB128 GB
Specyfikacja pamięcieMMCeMMC
Slot na karty pamięcimicroSDmicroSD
Maks. pojemność karty1024 GB1024 GB
Liczba SIMSIM + SIM/microSDSIM + SIM/microSD
Rodzaj karty SIMnano-SIMnano-SIM
Wyniki testów
AnTuTu Benchmark261613 punkty(ów)261613 punkty(ów)
Geekbench1292 punkty(ów)1292 punkty(ów)
Wild Life (Extreme)190 punkt(ów)190 punkt(ów)
Aparat tylny
Liczba obiektywów3 moduły2 moduły
Obiektyw główny
50 MP
f/1.8
28 mm
50 MP
f/1.8
 
Obiektyw pomocniczy
 /0.8 Mpx/
Obiektyw makro
 /2 MP, f/2.4/
 /2 MP, f/2.4/
Nagrywanie Full HD (1080p)30 kl./s30 kl./s
Lampa błyskowa
Aparat przedni
Konstrukcjaw kształcie łezkiw kształcie łezki
Obiektyw główny8 MP8 MP
Wartość przysłonyf/2.0f/2.0
Nagrywanie w jakości Full HD (1080p)30 kl./s30 kl./s
Komunikacja i złącza
Łączność
4G (LTE)
VoLTE
4G (LTE)
VoLTE
Komunikacja
Wi-Fi 5 (802.11ac)
Bluetooth v 5.3
Chip NFC /w zależności od rynku/
Wi-Fi 5 (802.11ac)
Bluetooth v 5.3
Chip NFC
Złącza
USB C 2.0
mini Jack (3.5 mm)
wyjście słuchawkowe u góry
USB C 2.0
mini Jack (3.5 mm)
wyjście słuchawkowe u góry
Funkcje i nawigacja
Funkcje i możliwości
czytnik linii papilarnych z boku
Google AR Core
Radio FM
latarka
czujnik światła
czytnik linii papilarnych z boku
 
Radio FM
latarka
czujnik światła
Nawigacja
aGPS
Moduł GPS
GLONASS
Galileo
kompas cyfrowy
 
Moduł GPS
GLONASS
Galileo
kompas cyfrowy
Zasilanie
Pojemność baterii5000 mAh5000 mAh
Czas pracy (PCMark)12.67 h10.77 h
Szybkie ładowaniePower DeliveryPower Delivery
Moc ładowania18 W18 W
Ładowanie bezprzewodowe
Dane ogólne
Materiał ramki / pokrywytworzywo sztuczne/tworzywo sztucznetworzywo sztuczne
Tylna pokrywamatowa
Wyposażenie
ładowarka
ładowarka
Wymiary (SxDxW)168x78x8.1 mm168x78x8.09 mm
Waga192 g192 g
Kolor obudowy
Data dodania do E-Kataloglistopad 2023listopad 2023

Charakterystyka wyświetlacza

Specyfikacja głównego (i najczęściej jedynego) wyświetlacza w urządzeniu.

Oprócz podstawowych parametrów - takich jak przekątna, rozdzielczość (ze względu na nią ekrany są umownie podzielone na HD, Full HD, href="/list/122/pr-49321/">2K i więcej), typ matrycy (najczęściej IPS, OLED, AMOLED, Super AMOLED, Dynamic AMOLED,), na tej liście mogą być podawane bardziej specyficzne cechy. Wśród nich - kształt powierzchni (płaska lub zakrzywiona), obecność i wersja Gorilla Glass (w tym najpopularniejsza v6 i Victus), obsługa HDR i częstotliwość odświeżania (częstotliwość wyższa niż 60 Hz jest uważana za wysoką, mianowicie 90 Hz, 120 Hz i 144 Hz). Oto bardziej szczegółowy opis specyfikacji, które są istotne dla współczesnych wyświetlaczy: — Przekątna. Tradycyjnie przekątna ekranu jest podawana w calach. Większy wyświetlacz jest wygodniejszy w obsłudze: pomieszczą więcej...informacji, a sam obraz jest lepiej czytelny. Minusem dużej przekątnej jest zwiększenie wymiarów urządzenia. Obecnie smartfony z ekranami 5" i mniejszymi są uważane za małe>. 5.6 – 6" i do 6.5" - to już jest średni format. Poza tym sporo modeli ma rozmiar 6.5". Klasyczne telefony bez ekranów dotykowych nie potrzebują dużej przekątnej - zwykle nie przekracza ona 3".

— Rozdzielczość. Rozdzielczość ekranu określają jego wymiary (w pionie i poziomie) w pikselach. Im większe są te wymiary (przy tej samej przekątnej), tym bardziej szczegółowy i wygładzony jest obraz, tym mniej widoczne są poszczególne piksele. Z drugiej strony zwiększenie rozdzielczości wpływa zarówno na koszt samego wyświetlacza, jak i wymagania sprzętowe telefonu. Warto też zauważyć, że ta sama rozdzielczość wygląda inaczej na ekranach o różnych rozmiarach; dlatego przy ocenie szczegółowości warto wziąć pod uwagę nie tylko parametr ten, lecz także ilość PPI (patrz poniżej).

— PPI. Zagęszczenie pikseli na ekranie urządzenia. Określa się na podstawie liczby punktów na cal (points per inch) - liczby pikseli na każdy poziomy lub pionowy odcinek o rozmiarze 1". Wskaźnik ten zależy jednocześnie od przekątnej i rozdzielczości, lecz ostatecznie jest to liczba PPI, która określa, jak wygładzony i szczegółowy jest obraz na wyświetlaczu. Dla porównania należy zaznaczyć, że w odległości około 25-30 cm od oczu zagęszczenie 300 PPI lub większe sprawia, że ​​poszczególne piksele są prawie niewidoczne dla osoby z normalnym wzrokiem, obraz jest postrzegany jako całościowy, przy większych odległościach podobny efekt jest zauważalny nawet przy mniejszym zagęszczeniu pikseli.

— Typ matrycy. Technologia, według której wykonana jest matryca ekranu. Parametr ten jest określa się tylko dla stosunkowo zaawansowanych wyświetlaczy, które przewyższają najprostsze ekrany LCD telefonów przyciskowych. Najbardziej rozpowszechnione w naszych czasach są następujące typy matryc:
  • IPS. Najbardziej popularna technologia, stosowana w ekranach współczesnych smartfonów. Zapewnia bardzo przyzwoitą jakość obrazu, kąty widzenia oraz czas reakcji, choć pod względem tych parametrów nieco ustępuje bardziej zaawansowanym wariantom (patrz poniżej). Z drugiej strony IPS ma również swoje zalety: trwałość, równomierne zużycie, a także dość niski koszt. Dzięki temu takie ekrany można spotkać we wszystkich kategoriach smartfonów - od niedrogich po topowe.
  • AMOLED. Technologia oparta na organicznych diodach elektroluminescencyjnych (OLED) opracowana przez firmę Samsung. Jedną z kluczowych różnic między takimi matrycami a bardziej tradycyjnymi wyświetlaczami jest to, że nie wymagają one zewnętrznego podświetlenia: każdy piksel sam jest źródłem światła. Z tego powodu zużycie energii takiego ekranu zależy od cech wyświetlanego obrazu, lecz generalnie okazuje się dość niskie. Ponadto matryce AMOLED wyróżniają się szerokimi kątami widzenia, doskonałymi wskaźnikami jasności i kontrastu, wysoką jakością kolorów oraz krótkim czasem reakcji. Dzięki temu takie ekrany nadal są wykorzystywane we współczesnych smartfonach, pomimo pojawienia się bardziej zaawansowanych technologii; można je spotkać nawet w topowych modelach. Główną wadą tej technologii jest stosunkowo wysoki koszt i nierównomierne zużycie pikseli: piksele, które pracują dłużej i częściej przy dużej jasności - wypalają się szybciej. Zwykle jednak efekt ten staje się zauważalny dopiero po kilku latach intensywnego użytkowania - okresie porównywalnym z żywotnością samego smartfona.
  • AMOLED (LTPO). Zaawansowana wersja paneli AMOLED z możliwością dynamicznego dostosowywania częstotliwości odświeżania w zależności od wykonywanych zadań. Skrót LTPO (Low Temperature Polycrystalline Oxid) oznacza „niskotemperaturowy tlenek polikrystaliczny”. Za tym terminem kryje się połączenie tradycyjnej technologii LTPS i cienkiej warstwy tlenku TFT z dodatkiem hybrydowo-tlenkowego krzemu polikrystalicznego do sterowania obwodami przełączającymi. Panele AMOLED (LTPO) zmniejszają zużycie energii przez gadżet o rząd wielkości. Tak więc przy wykonywaniu aktywnych czynności ekran urządzenia stosuje maksymalną lub wysoką częstotliwość odświeżania, a przy przeglądaniu zdjęć lub czytaniu tekstu wyświetlacz zmniejsza częstotliwość odświeżania do minimum.
  • Super AMOLED. Ulepszona wersja opisanej powyżej technologii AMOLED. Jednym z kluczowych ulepszeń jest to, że ekrany Super AMOLED nie mają szczeliny powietrznej między warstwą czujnika a znajdującym się poniżej wyświetlaczem. Umożliwiło to dalsze zwiększenie jasności i jakości obrazu, zwiększenie szybkości i niezawodności czujnika, a jednocześnie zmniejszenie zużycia energii. Wady takich matryc są takie same jak w przypadku oryginalnych AMOLED-ów. Ogólnie są one dość rozpowszechnione; większość smartfonów z podobnymi ekranami należy do średniej i najwyższej półki, lecz są też spotykane niedrogie modele.
  • OLED. Różnorodne typy matryc, oparte na wykorzystaniu organicznych diod LED; w rzeczywistości - są to analogi AMOLED i Super AMOLED, produkowane nie przez Samsunga, lecz przez inne firmy. Konkretne cechy takich ekranów może się różnić, natomiast większość z nich z jednej strony jest droższa od popularnych IPS, z drugiej zapewnia wyższą jakość obrazu (m.in. jasność, kontrast, kąty widzenia i odwzorowanie kolorów), gdyż również zużywają mniej energii i mają małą grubość. Głównymi wadami ekranów OLED są wysoka cena (która jednak stale spada wraz z rozwojem i udoskonalaniem technologii), a także podatność pikseli organicznych na wypalanie się przy wyświetlaniu statycznych obrazów przez długi czas lub obrazów ze statycznymi elementami (panel powiadomień, przyciski ekranowe itp.).
  • OLED (polimerowy). Ekrany oparte na organicznych diodach elektroluminescencyjnych (OLED), w których dla podstawy nie używa się szkła, tylko przezroczysty materiał polimerowy. Podkreślmy, że chodzi o podstawę matrycy; od góry pokryta jest ona tym samym szkłem, co w innych typach wyświetlaczy. Tak czy inaczej, taka konstrukcja oferuje kilka zalet w porównaniu z tradycyjnymi matrycami „szklanymi”: zapewnia dodatkową odporność na uderzenia i doskonale nadaje się do tworzenia zakrzywionych wyświetlaczy. Z drugiej strony, pod względem właściwości optycznych, tworzywo sztuczne jest gorsze od szkła; zatem ekrany tego typu często ustępują jakością obrazu swoim „rówieśnikom”, wykonanym w tradycyjnej technologii OLED, a przy podobnej jakości obrazu są znacznie droższe.
  • OLED (LTPO). Matryce OLED z adaptacyjną częstotliwością odświeżania, która zmienia się w szerokim zakresie w zależności od wykonywanych zadań. W grach ekrany z technologią LTPO automatycznie podnoszą częstotliwość odświeżania do wartości maksymalnych, zaś przy oglądaniu statycznych obrazów obniżają ją do minimum (od 1 Hz). Sercem tej technologii jest tradycyjne podłoże LTPS z cienką warstwą TFT nad podstawą tranzystorów cienkowarstwowych. Możliwość kontrolowania przepływu elektronów zapewnia dynamiczną kontrolę nad częstotliwością odświeżania. Przewagą konkurencyjną OLED (LTPO) jest zmniejszone zużycie energii.
Ponadto ekrany we współczesnych smartfonach mogą być wykonywane przy użyciu następujących technologii:
  • PLS. Odmiana technologii IPS stworzona przez firmę Samsung. Pod pewnymi względami - w szczególności pod względem jasności, kontrastu i kątów widzenia - przewyższa oryginał, a jednocześnie jest tańsza w produkcji i pozwala tworzyć elastyczne wyświetlacze. Jednak z wielu powodów ta technologia nie zyskała zbyt dużej popularności.
  • Super AMOLED Plus. Dalszy rozwój opisanej powyżej technologii Super AMOLED. Pozwala tworzyć jeszcze jaśniejsze, bardziej kontrastowe, a jednocześnie cieńsze i energooszczędne ekrany. Jednak najczęściej te ekrany są obecnie nazywane po prostu „Super AMOLED”, bez przedrostka „Plus”.
  • Dynamiczny AMOLED. Kolejne ulepszenie AMOLED wprowadzone w 2019 roku. Głównymi cechami takich matryc jest zwiększona jasność bez znaczącego wzrostu zużycia energii, a także 100% pokrycie przestrzeni barwnej DCI-P3 oraz kompatybilność z HDR10+; szczególnie dwa ostatnie szczegóły pozwalają na najwyższą jakość odtwarzania współczesnych filmów wysokobudżetowych na takich ekranach. Główną wadą Dynamic AMOLED jest wysoka cena; więc takie matryce spotyka się głównie w topowych modelach.
  • Super Clear TFT. Wspólne opracowanie Samsunga i Sony, które pojawiło się jako wymuszona alternatywa dla matryc Super AMOLED (zapotrzebowanie na nie kiedyś znacznie przekraczało możliwości produkcyjne). Co prawda jakość obrazu Super Clear TFT jest nieco niższa - lecz w produkcji takie matryce są znacznie prostsze i tańsze, a pod względem właściwości wciąż przewyższają większość ekranów IPS. Jednak w naszych czasach technologia ta jest rzadko używana, ustępując AMOLED-owi w różnych wersjach.
  • Super LCD. Kolejna alternatywa dla różnych typów technologii AMOLED; stosowana głównie w smartfonach HTC. Podobnie jak Super AMOLED, takie ekrany nie mają dodatkowej szczeliny powietrznej, co wpływa pozytywnie zarówno na jakość obrazu, jak i na dokładność sensora. Istotną zaletą Super LCD jest jego dobra energooszczędność, zwłaszcza przy wyświetlaniu jasnej bieli; lecz pod względem ogólnego nasycenia kolorów (w tym czerni) ta technologia jest zauważalnie gorsza od AMOLED.
  • LTPS. Zaawansowany typ matryc TFT, stworzony w oparciu o tzw. niskotemperaturowy krzem polikrystaliczny. Umożliwia on łatwe tworzenie ekranów o bardzo dużym zagęszczeniu pikseli (ponad 500 PPI - patrz wyżej), osiągając wysokie rozdzielczości nawet przy niewielkiej przekątnej. Ponadto część elektroniki sterującej można osadzić bezpośrednio w matrycę, zmniejszając całkowitą grubość wyświetlacza. Główną wadą LTPS jest stosunkowo wysoki koszt, lecz w dzisiejszych czasach takie ekrany można spotkać nawet w niedrogich smartfonach.
  • S-PureLED. Technologia stworzona przez firmę Sharp i używana głównie w jej smartfonach. Właściwie technologia samych matryc w tym przypadku nazywa się S-CG Silicon TFT, natomiast S-PureLED to nazwa specjalnej warstwy, używanej w celu zwiększenia przezroczystości. S-CG Silicon TFT jest pozycjonowane przez twórców jako modyfikacja opisanej powyżej technologii LTPS, która pozwala na dalsze zwiększenie rozdzielczości wyświetlacza i jednocześnie zgromadzenie w nim większej ilości elektroniki sterującej (aż do „procesora na szkle” ) bez zwiększania grubości. Oczywiście takie ekrany nie są tanie.
  • E-Ink. Matryce oparte na tzw. „elektronicznym tuszu” - technologii upowszechnionej przede wszystkim w e-bookach. Główną cechą takiego ekranu jest to, że przy jego działaniu energia jest zużywana tylko na zmianę obrazu; nieruchomy obraz nie wymaga zasilania i może pozostać na wyświetlaczu nawet wtedy, gdy zasilania brak. Dodatkowo matryce E-Ink domyślnie nie świecą się same, a odbijają światło zewnętrzne - tak że podświetlenie własne nie jest obowiązkowe (choć można je stosować do pracy w półmroku i ciemności). Wszystko to zapewnia znaczne oszczędności energii; a dla niektórych użytkowników takie ekrany są czysto subiektywnie wygodniejsze i mniej męczące niż tradycyjne matryce. Z drugiej strony technologia E-Ink ma również poważne wady - przede wszystkim długi czas reakcji, a także złożoność i wysoki koszt kolorowych wyświetlaczy w połączeniu z niską jakością kolorów na nich. W świetle tego, takie matryce stały się bardzo rzadkim i egzotycznym wariantem, prawie nie spotykanym w dzisiejszych smartfonach.
— Częstotliwość odświeżania. Maksymalna częstotliwość odświeżania wyświetlacza, innymi słowy, najwyższa częstotliwość odświeżania, którą może on efektywnie odtworzyć. Im wyższy wskaźnik ten - tym wygładzony i płynny jest obraz, tym mniej zauważalny jest „efekt pokazu slajdów” i rozmycie obiektów przy poruszaniu się na ekranie. Jednocześnie należy pamiętać, że częstotliwość odświeżania 60 Hz, obsługiwana przez prawie każdy współczesny smartfon, jest w zupełności wystarczająca do większości zadań; nawet filmiki w wysokiej rozdzielczości obecnie prawie nie używają dużej liczby klatek na sekundę. Dlatego częstotliwość odświeżania w naszym katalogu jest specjalnie określana głównie dla ekranów zdolnych zapewnić więcej niż 60 Hz (w niektórych modelach - do 240 Hz). Tak wysoka częstotliwość może być przydatna w grach i niektórych innych zadaniach, poprawia też ogólne wrażenia z systemu operacyjnego i interfejsu aplikacji - ruchome elementy w takich interfejsach poruszają się płynnie i bez rozmycia.

— HDR. Technologia, która rozszerza dynamiczny zakres ekranu. W danym przypadku chodzi o zakres jasności - innymi słowy obecność HDR pozwala na wyświetlenie na ekranie jaśniejszej bieli i ciemniejszej czerni niż na wyświetlaczach bez tej technologii. W praktyce daje to zauważalną poprawę jakości obrazu: poprawia się nasycenie i niezawodność odwzorowania kolorów, a detale w bardzo jasnych lub bardzo ciemnych częściach kadru nie „toną” w bieli lub czerni. Jednak wszystkie te korzyści stają się zauważalne tylko wtedy, gdy odtwarzana treść była oryginalnie nagrana w HDR. Obecnie stosuje się kilka odmian tej technologii, oto ich cechy:
  • HDR10. Historycznie pierwszy z konsumenckich formatów HDR, jest dziś niezwykle popularny: w szczególności jest obsługiwany przez prawie wszystkie serwisy przesyłania strumieniowego z treścią HDR i jest używany jako standard dla takich treści na dyskach Blu-ray. Zapewnia 10-bitową głębię kolorów (ponad miliard odcieni). Jednocześnie urządzenia z tą technologią mogą również odtwarzać treści HDR10 + (patrz poniżej) - chyba że ich jakość będzie ograniczona możliwościami oryginalnego HDR10.
  • HDR10+. Ulepszona wersja HDR10. Przy tej samej głębi koloru (10 bitów) wykorzystuje tzw. dynamiczne metadane, które pozwalają na przekazywanie informacji o głębi koloru nie tylko dla grup po kilka klatek, lecz także dla pojedynczych klatek. Zapewnia to dodatkową poprawę reprodukcji kolorów.
  • Dolby Vision. Zaawansowany standard używany szczególnie w kinematografii profesjonalnej. Pozwala na osiągnięcie 12-bitowej głębi kolorów (prawie 69 miliardów odcieni), wykorzystuje wspomniane wyżej dynamiczne metadane, a także umożliwia przesyłanie dwóch wersji obrazu jednocześnie w jednym strumieniu wideo - HDR i normalnym (SDR). Jednocześnie Dolby Vision bazuje na tej samej technologii co HDR10, więc we współczesnym sprzęcie format ten często łączy się z HDR10 czy HDR10+.


Obsługa DC Dimming. Dosłownie z angielskiego, Direct Current Dimming jest tłumaczone jako ściemnianie prądem stałym. Technologia ta ma na celu zminimalizowanie migotania w ekranach OLED i AMOLED, co z kolei odciąża aparat wzrokowy użytkownika i chroni wzrok. Efekt „bez migotania” uzyskuje się poprzez bezpośrednie sterowanie jasnością podświetlanych diod LED poprzez zmianę wielkości podawanego do nich napięcia. Dzięki temu zapewnione jest zmniejszenie intensywności świecenia ekranu. — Zakrzywiony ekran. Ekran z zagiętymi krawędziami, na które wchodzi wyświetlany obraz. Innymi słowy, w danym przypadku zakrzywione jest nie tylko szkło, lecz także część aktywnej matrycy. Wyświetlacze, w których obie krawędzie są zakrzywione, nazywane są „szkłem 2.5D”; istnieją też urządzenia, w których ekran jest zagięty tylko z jednej strony. W każdym razie ta cecha szczególna nadaje smartfonowi ciekawy wygląd i poprawia widoczność obrazu przy patrzeniu z określonych kątów, jednak znacząco wpływa to na koszt i może powodować niedogodności przy trzymaniu (zwłaszcza bez etui). Dlatego przed zakupem modelu z takim wyposażeniem najlepiej potrzymać urządzenie w dłoni i upewnić się, że jest ono wystarczająco wygodne.

— Gorilla Glass. Specjalne wytrzymałe szkło, stosowane jako pokrycie ochronne wyświetlacza. Charakteryzuje się wysoką wytrzymałością i odpornością na zarysowania, pod względem tych wskaźników wielokrotnie przewyższa zwykłe szkło. Jest szeroko stosowane w smartfonach, w których duże rozmiary ekranu stawiają zwiększone wymagania niezawodności pokrycia. Różne wersje tego szkła można spotkać we współczesnych telefonach, oto cechy różnych wariantów:
  • Gorilla Glass v3. Najstarsza z aktualnych wersji - wydana w roku 2013; obecnie występuje głównie w stosunkowo niedrogich lub przestarzałych urządzeniach. Niemniej jednak pokrycie to ma niewątpliwe zalety: jest to pierwsza generacja Gorilla Glass, w której twórcy położyli zauważalny nacisk na odporność na zarysowania od kluczy, monet i innych przedmiotów, z którymi telefon może „zderzyć się” w kieszeni lub torbie. Pod tym względem wersja 3 pozostawała bezkonkurencyjna aż do wydania Gorilla Glass Victus w 2020 roku.
  • Gorilla Glass v4. Wersja wydana w 2014 roku. Kluczową cechą przy opracowywaniu tego pokrycia stał się nacisk na odporność na uderzenia (podczas gdy poprzednie generacje skupiały się głównie na odporności na zarysowania). W efekcie szkło jest dwukrotnie mocniejsze niż w wersji 3, a jego grubość wynosi zaledwie 0,4 mm. Natomiast odporność na zarysowania, w porównaniu do swojego poprzednika, nieznacznie spadła.
  • Gorilla Glass v5. Udoskonalenie "goryla", wprowadzone w 2016 roku w celu dalszego zwiększenia odporności na uderzenia. Według twórców, szkło wersji v5 okazało się 1,8 razy mocniejsze od poprzednika, pozostało nienaruszone w 80% upadków z wysokości 1,6 m „twarzą w dół” na chropowatą powierzchnię (i gwarantowana odporność na uderzenia 1,2 m). Odporność na zarysowania również nieco się poprawiła, lecz ten materiał w dalszym ciągu nie spełnia wymagań v3.
  • Gorilla Glass v6. Wersja wprowadzona w 2018 roku. W przypadku tego pokrycia deklaruje się 2-krotny wzrost wytrzymałości w porównaniu z poprzednikami, a także odporność na wielokrotne upadki na twardą powierzchnię (w testach szkło v6 z powodzeniem wytrzymało 15 upadków z wysokości 1 m). Maksymalna wysokość upadku (pojedynczego) z gwarantowanym zachowaniem stanu jest deklarowana na poziomie 1,6 m. Nie mniej jednak odporność na zarysowania nie została ulepszona.
  • Gorilla Glass 7. Oryginalna nazwa Gorilla Glass Victus - patrz poniżej.
  • Gorilla Glass Victus. Następca Gorilla Glass 6, wydany latem 2020 roku. W tym wydaniu twórcy zwrócili uwagę nie tylko na zwiększenie ogólnej wytrzymałości, lecz także na poprawę odporności na zarysowania. Pod względem tego ostatniego wskaźnika Victus przewyższa nawet wersję v3, nie wspominając o bardziej wrażliwych materiałach (a w porównaniu z v6 zadeklarowano dwukrotne zwiększenie odporności na zarysowania). Jeśli chodzi o wytrzymałość, pozwala wytrzymać pojedyncze upadki z wysokości do 2 m, a także do 20 kolejnych upadków z wysokości 1 m.

DCI-P3

Procent pokrycia ekranem smartfona gamy kolorów DCI-P3.

Przestrzeń ta charakteryzuje się szerszą gamą barw niż standardowy trójkąt sRGB. Ogólnie przestrzeń kolorów DCI-P3 odpowiada modelowi Adobe RGB, jednak z przesunięciem ku czerwieni. W praktyce wysoki współczynnik pokrycia oznacza wysoką jakość odwzorowania kolorów ekranu i pozwala na bardziej subtelną obróbkę obrazu przechwyconego z aparatu urządzenia mobilnego.

Częstotliwość procesora

Częstotliwość taktowania procesora, w który wyposażone jest urządzenie. W przypadku procesorów wielordzeniowych, które są powszechnie stosowane w nowoczesnych smartfonach, przyjmuje się częstotliwość każdego pojedynczego rdzenia; a jeśli procesor ma rdzenia o różnych częstotliwościach (patrz „Liczba rdzeni”) - z reguły podawana jest wartość maksymalna.

Ogólnie rzecz biorąc, wydajne smartfony charakteryzują się wysokimi częstotliwościami procesora. Należy jednak pamiętać, że parametr ten sam w sobie nie jest bezpośrednio związany z możliwościami procesora: na rzeczywistą moc chipa wpływa wiele innych jego funkcji, a często rozwiązanie budżetowe z dużą częstotliwością taktowania okazuje się mniej produktywne niż droższy i jednocześnie wydawałoby się wolniejszy procesor. Ponadto ogólna wydajność systemu zależy bezpośrednio od całego zestawu innych czynników - przede wszystkim od ilości pamięci RAM. Dlatego przy ocenie smartfona należy kierować się nie tyle częstotliwością procesora, ile ogólną charakterystyką systemu i wskaźnikami wizualnymi, takimi jak wyniki testów (patrz poniżej).

Ocena procesora

Kompleksowa ocena procesorów (niezależnie od producenta chipsetu) dla smartfonów z systemem Android. Opiera się na zestawie wskaźników maksymalnej wydajności samego procesora, magistrali pamięci, rdzenia graficznego itp. Oceny procesorów mogą być przydatne, aby umożliwić porównanie i łatwy wybór podobnych modeli.

GPU

Model GPU zastosowany w telefonie komórkowym.

Ten moduł jest odpowiedzialny za wszystkie zadania związane z grafiką; w związku z tym jego cechy bezpośrednio wpływają na wydajność przetwarzania określonego obrazu. Jest to szczególnie widoczne na przykładzie „ciężkich” treści, takich jak nowoczesne gry 3D. Dlatego posiadanie wydajnej karty wideo jest szczególnie ważne w przypadku smartfonów gamingowych. Znając model GPU, możesz znaleźć szczegółowe dane na jego temat i ocenić jego możliwości.

Liczba obiektywów

Liczba pojedynczych obiektywów przewidziana w głównym (tylnym) module aparatu urządzenia. Jest wskazywana tylko wtedy, gdy obiektywów jest więcej niż jeden. W danym przypadku każde "oczko” ma swoją własną matrycę i faktycznie jest odrębnym aparatem; można je jednak z powodzeniem stosować razem, tworząc jeden obraz przy użyciu danych z kilku obiektywów lub uzupełniając się nawzajem. Jako ilustrację drugiego przypadku można podać następujący przykład: przy korzystaniu z zoomu smartfon może automatycznie przełączać się z optyki głównej na teleobiektyw, gdy wybrana przez użytkownika krotność przekroczy określony próg.

Najprostszym wariantem modułu głównego z kilkoma obiektywami jest podwójny aparat, jednak coraz powszechniejsze są urządzenia z 3 lub więcej tylnymi aparatami (w niektórych modelach liczba obiektywów może sięgać sześciu). W każdym razie te aparaty zwykle różnią się specyfikacją i pełnią różne funkcje. W ten sposób zwykły kolorowy aparat może być uzupełniona o obiektyw do nagrywania czarno-białego, który poprawia kontrast; w niektórych modelach obiektywy o różnych ogniskowych pozwalają wybrać optymalny kąt widzenia w określonych warunkach; informacje z pomocniczego obiektywu (patrz poniżej) są zwykle używane do regulacji głębi ostrości już gotowego zdjęcia, itp. Te szczegóły należy wyjaśnić osobno, lecz w każdym razie obecność kilku obiektywów oznacza zaawansowane możliwości nagrywania.

Obiektyw główny

Specyfikacja głównego obiektywu aparatu tylnego, zainstalowanego w telefonie. W modelach z kilkoma obiektywami (patrz „Liczba obiektywów”) „oczko” jest uważane za główne, które odpowiada za podstawowe możliwości nagrywania i nie ma wyraźnej specjalizacji (szerokokątna, teleobiektyw itp.). Mogą tutaj wskazywać się cztery główne parametry: rozdzielczość, przysłona (dość powszechna jest optyka o wysokim współczynniku przysłony), ogniskowa, dodatkowe dane dotyczące matrycy.

Rozdzielczość (w megapikselach, MP)
Rozdzielczość matrycy zastosowanej w głównym obiektywie. Warianty budżetowe są wyposażone w moduł 8 MP i poniżej wiele modeli ma aparat 12 MP / 13 MP, także ostatnio popularna jest tendencja do zwiększania liczby megapikseli. Często w smartfonach można spotkać główny fotomoduł na 48 MP, 50 MP< /a>, 64 MP, a nawet 108 MP a> .

Maksymalna rozdzielczość uzyskanego obrazu zależy bezpośrednio od rozdzielczości czujnika; a wysoka rozdzielczość „obrazu” pozwala z kolei na lepsze wyświetlenie drobnych szczegółów. Z drugiej strony samo zwiększenie liczby megapikseli może prowadzić do pogorszenia ogólnej jakości obrazu - ze względu na mniejszy rozmiar każdego...pojedynczego piksela poziom szumów wzrasta. W rezultacie bezpośrednia rozdzielczość aparatu ma niewielki wpływ na jakość fotografowania - więcej zależy od fizycznych rozmiarów matrycy, cech optyki i różnych trików konstrukcyjnych zastosowanych przez producenta.

Wartość przysłony
Wartość przysłony opisuje zdolność obiektywu do przepuszczania światła. Jest zapisywany jako liczba ułamkowa, na przykład f/1,9. Co więcej, im większa liczba w mianowniku, tym niższy wartość przysłony, tym mniej światła przechodzi przez optykę, pod warunkiem że pozostałe parametry są podobne. Oznacza to, że na przykład obiektyw f/2.6 będzie ciemniejszy niż f/1.9.

Wysoki wartość przysłony zapewnia aparatowi szereg zalet. Po pierwsze, poprawia wydajność przy słabym oświetleniu. Po drugie, możliwe staje się nagrywanie przy niskich czasach otwarcia migawki, minimalizując efekt „drgania” i rozmycia poruszających się obiektów w kadrze. Po trzecie, z optyką o dużym współczynniku przysłony łatwiej jest uzyskać piękne rozmycie tła („bokeh”) - na przykład przy nagrywaniu w trybie portretowym.

Ogniskowa(w milimetrach)
Ogniskowa to odległość między czujnikiem a środkiem obiektywu (ogniskowana na nieskończoność), przy której na matrycy uzyskuje się najostrzejszy obraz. Jednakże w przypadku smartfonów, w specyfikacji wskazuje się nie rzeczywista, lecz tzw. ekwiwalentna ogniskowa (EO) - wskaźnik umowny przeliczany za pomocą specjalnych formuł. Wskaźnik ten można wykorzystać do oceny i porównania aparatów z różnymi rozmiarami matryc (nie można do tego wykorzystać faktycznej ogniskowej, ponieważ przy innym rozmiarze czujnika ta sama faktyczna ogniskowa będzie odpowiadać różnym kątom widzenia).

Tak czy inaczej, kąt widzenia i stopień powiększenia zależą bezpośrednio od EO: większa ogniskowa daje mniejszy kąt widzenia i większy rozmiar pojedynczych obiektów, które wpadają w kadr, a także zmniejszenie tej odległości z kolei pozwala na objęcie większej przestrzeni. W większości nowoczesnych smartfonów ogniskowa głównego aparatu wynosi od 13 do 35 mm; w porównaniu z optyką tradycyjnych aparatów obiektywy z EO do 25 mm można zaklasyfikować jako szerokokątne, powyżej 25 mm - jako modele uniwersalne „z nastawieniem na nagrywanie szerokokątne”. Takie wartości dobierane są z uwzględnieniem faktu, że smartfony często wykorzystywane są do nagrywania w ciasnych warunkach, gdy na niewielkiej odległości w kadrze trzeba zmieścić dość dużą przestrzeń. Powiększanie obrazu w razie potrzeby najczęściej odbywa się cyfrowo - ze względu na dostarczenie megapikseli na matrycę; lecz są też modele z zoomem optycznym (patrz poniżej) - dla nich nie podaje się jednej wartości, natomiast cały zakres roboczy EO (przypomnijmy, że zoom optyczny jest realizowany się poprzez zmianę ogniskowej).

Kąt widzenia(w stopniach) Kąt widzenia charakteryzuje wielkość przestrzeni zajmowanej przez obiektyw, a także wielkość poszczególnych obiektów „widzianych” przez kamerę. Im większy ten kąt, tym większa część sceny wpada w kadr, jednak tym mniejsze są poszczególne obiekty na obrazie. Kąt widzenia jest bezpośrednio związany z ogniskową (patrz wyżej): zwiększenie tej odległości zawęża pole widzenia obiektywu i odwrotnie.

Należy pamiętać, że parametr ten jest powszechnie uważany za ważny dla profesjonalnego używania aparatu, lecz nie dla fotografii amatorskiej. Dlatego dane o kącie widzenia podawane są głównie dla smartfonów wyposażonych w zaawansowane aparaty - m.in. w celu podkreślenia w ten sposób wysokiej klasy tych aparatów. Jeśli chodzi o konkretne wartości, to dla głównego obiektywu mieszą się one zwykle w zakresie od 70° do 82° - odpowiada to ogólnej specyfice takiej optyki (nagrywanie uniwersalne z naciskiem na sceny ogólne i szerokie objęcie na krótkich dystansach).

Dodatkowe dane dotyczące matrycy
Dodatkowe informacje dotyczące matrycy zainstalowanej na głównym obiektywie. Ta pozycja może obejmować zarówno rozmiar przekątnej (w calach), jak i model czujnika, a czasami oba parametry jednocześnie. W każdym razie takie dane są podawane, jeśli urządzenie jest wyposażone w wysokiej jakości matrycę, która wyraźnie wyróżnia się na ogólnym tle. W przypadku modelu wszystko jest dość proste: znając nazwę czujnika, można znaleźć szczegółowe dane na jego temat. Rozmiar należy rozważyć bardziej szczegółowo.

Przekątna matrycy jest tradycyjnie podawana w ułamkowych częściach cala - na przykład czujnik na 1/2,3 "będzie większy niż 1/2,6". Większe czujniki są uważane za bardziej zaawansowane, ponieważ zapewniają lepszą jakość obrazu przy tej samej rozdzielczości. Logika tutaj jest prosta - ze względu na dużą powierzchnię czujnika, każdy pojedynczy piksel jest również większy i dostaje więcej światła, co poprawia czułość i redukuje szumy. Rzeczywista jakość obrazu będzie oczywiście zależała również od szeregu innych parametrów, lecz generalnie większy rozmiar matrycy oznacza zazwyczaj bardziej zaawansowany aparat. W zaawansowanych flagowcach fotograficznych mogą występować matryce o fizycznym rozmiarze 1”, co jest porównywalne z czujnikami obrazu stosowanymi w topowych aparatach kompaktowych z obiektywami stałoogniskowymi.

Obiektyw pomocniczy

Obecność obiektywu pomocniczego w module aparatu głównego (tylnego) smartfona. Wspólną cechą wszystkich obiektywów pomocniczych jest to, że same nie robią zdjęć, a jedynie dostarczają do głównego aparatu dodatkowe dane. Lecz typy tych danych i odpowiednio sposoby korzystania z kamer pomocniczych mogą być różne.

W niektórych smartfonach instalowane jest dodatkowe „oko” o bardzo małej rozdzielczości, które służy do uzyskania specjalnych informacji o głębi ostrości w niektórych trybach nagrywania (przede wszystkim w trybie portretowym). Taki format pracy zapewnia szereg ciekawych funkcji - w szczególności umożliwia zmianę głębi ostrości na już gotowym obrazie poprzez przeniesienie ostrości na konkretny obiekt. Inną ciekawą odmianą są tzw. kamery ToF (time-of-flight), działające na zasadzie dalmierzy i zdolne do tworzenia modeli 3D różnych obiektów (w tym odczytywania mimiki z twarzy użytkownika). Istnieją inne odmiany, takie jak czarno-biały aparat pomocniczy do rozszerzania zakresu dynamicznego oraz duży otwór przysłony zapewniający lepszą wydajność przy słabym oświetleniu.

Funkcje i możliwości

Dodatkowe funkcje i możliwości urządzenia.

We współczesnych telefonach komórkowych (zwłaszcza smartfonach) może być przewidziana bardzo rozbudowana dodatkowa funkcjonalność. Mogą to być zarówno zwyczajne funkcje, z których wiele jest bezpośrednio związanych z pierwotnym przeznaczeniem urządzenia, jak i raczej nowe i/lub nietypowe funkcje. Do pierwszej kategorii można odnieść przycisk wezwania pomocy (często występujący w telefonach dla seniorów), redukcję szumów, odbiornik FM, diodę powiadomień, prostą latarkę i czujnik światła. Druga kategoria obejmuje skaner twarzy i skaner linii papilarnych(ten ostatni może być umiejscowiony na tylnej pokrywie, panelu bocznym, przednim, a nawet bezpośrednio na ekranie), żyroskop, zaawansowaną pełnowartościową latarkę, dźwięk stereo, obsługę rozszerzonej rzeczywistości, a nawet tak egzotyczne rzeczy jak barometr. Oto bardziej szczegółowy...opis każdego wariantu:

- Skaner twarzy (FaceID). Specjalna technologia rozpoznawania twarzy użytkownika nie tyko za sprawą fotografowania, lecz także dzięki budowie trójwymiarowego modelu twarzy na podstawie danych ze specjalnego modułu na panelu przednim. Technologia ta jest stale udoskonalana, obecnie jest w stanie uwzględnić zmianę fryzury i zarostu, obecność okularów, makijażu itp. Jednocześnie rozpoznawanie bliźniaków i twarzy dzieci pozostają słabymi punktami (mają mniej cech indywidualnych niż u osób dorosłych). Głównym zastosowaniem skanera twarzy jest uwierzytelnianie przy odblokowywaniu smartfona, logowaniu do aplikacji, dokonywaniu płatności itp. Jednocześnie możliwe są inne, bardziej oryginalne scenariusze użycia. Na przykład, w niektórych aplikacjach skaner twarzy odczytuje wyraz twarzy użytkownika, a następnie ten wyraz jest powtarzany przez twarz na ekranie telefonu.

- Skaner odcisków palców. Czytnik linii papilarnych. Służy głównie do autoryzacji użytkownika - np. przy odblokowywaniu urządzenia, przy logowaniu do określonych aplikacji lub kont, przy potwierdzaniu płatności itp. Jeśli chodzi o różne warianty umiejscowienia, to najbardziej popularne są obecnie skanery umiejscowione w tylnej obudowie urządzenia - taki czujnik można dotknąć palcem wskazującym, nie puszczając smartfona i praktycznie bez zmiany chwytu. Skaner na bocznej ściance działa w podobny sposób, lecz aby go uruchomić, nie wystarczy go po prostu dotknąć, należałoby przesunąć po nim palcem. Taki format pracy ma na celu uniknięcie wystąpienia fałszywych detekcji przy normalnym trzymaniu (zwykle skaner znajduje się tuż pod kciukiem prawej ręki), co więcej, niewielka powierzchnia czujnika nie pozwala na odczytanie wystarczająco dużego fragmentu odcisku palca bez poruszania palcem. Z kolei, czujniki na przednim panelu były jakiś czas temu dość popularne - w szczególności dzięki Apple, które jako pierwsze zaimplementowało rozpoznawanie odcisków palców w swoich gadżetach; jabłkowe smartfony nadal używają właśnie tradycyjnego wariantu skanera, zlokalizowanego z przodu. Jednakże taka lokalizacja nieuchronnie zwiększa rozmiar dolnej ramki, więc w dzisiejszych czasach coraz większą popularność zyskuje inny wariant - skanery umieszczane bezpośrednio w ekranie (a dokładniej pod matrycą ekranu) nie zajmujące dodatkowego miejsca na panelu przednim.

- Google AR Core. Obsługa przez smartfon rozszerzonej rzeczywistości (AR) Google AR Core. Ta technologia jest używana do pracy z AR w smartfonach z systemem Android. Więcej informacji na temat rzeczywistości rozszerzonej i technologii specjalnych można znaleźć poniżej.

- Apple AR Kit. Obsługa przez smartfon rozszerzonej rzeczywistości (AR) Apple AR Kit. Ta technologia jest używana do pracy z AR w smartfonach Apple pracujących na iOS. Więcej informacji na temat rzeczywistości rozszerzonej i technologii specjalnych można znaleźć poniżej.

- Obsługa specjalnych technologii rzeczywistości rozszerzonej. Ogólna idea rzeczywistości rozszerzonej (AR) polega na dodaniu do obrazu świata rzeczywistego, widzianego na ekranie urządzenia, pewnych dodatkowych elementów „wbudowanych” w świat rzeczywisty i wyglądających jak jego część. Jednym z najbardziej znanych przykładów AR jest gra Pokemon Go, w której gracz używa aparatu, aby wyszukiwać wirtualnych Pokemonów w prawdziwym terenie. Inne warianty zastosowania to funkcje - nawigacja (wyświetlanie „linii prowadzącej” bezpośrednio na ekranie smartfona nad obrazem z kamery), aranżacja wnętrz (możliwość wirtualnego dopasowania obiektu do istniejącego otoczenia), naprawa samochodu (podkreślenie kluczowych części, "widzenie rentgenowskie") itd. Jednak w tym przypadku chodzi nie tylko o możliwość pracy z aplikacjami AR, ale też o obsługę specjalnych technologii rozszerzonej rzeczywistości - najczęściej Google AR Core lub Apple AR Kit. Specyfika tych technologii polega na tym, że rozszerzają one możliwości dostępne zarówno dla użytkowników, jak i dla twórców oprogramowania. Dzięki temu użytkownicy uzyskują obszerniejszy zestaw aplikacji AR z bardziej zaawansowanymi funkcjami; a twórcami takich aplikacji mogą być nie tylko duże firmy, lecz prawie wszyscy, w tym indywidualni specjaliści.

- Dźwięk stereo. Możliwość odtwarzania pełnowartościowego dźwięku stereo przez własne głośniki telefonu, bez zewnętrznych urządzeń audio. Do tego zadania potrzeba co najmniej dwa głośniki. Komplikuje to konstrukcję i zwiększa jej koszt, lecz ma pozytywny wpływ na jakość dźwięku: jest bardziej wyrazisty i szczegółowy niż przy użyciu jednego głośnika, ma efekt trójwymiarowości, a także wyższy poziom głośności.

- Odbiornik FM. Wbudowany moduł do odbioru stacji radiowych, nadających w zakresie FM. Niektóre urządzenia obsługują też inne zakresy, jednak to właśnie FM cieszy się obecnie największą popularnością (ze względu na możliwość przekazywania dźwięku stereo), zatem właśnie w nim najczęściej nadają stacje muzyczne. Należy pamiętać, że niektóre urządzenia mogą wymagać podłączenia słuchawek przewodowych, aby móc zapewnić niezawodny odbiór - ich kabel pełni rolę anteny zewnętrznej.

- Dioda powiadomień. Fizycznie odseparowany sygnalizator świetlny, pulsujący lub stale świecący w odpowiedzi na przychodzące powiadomienia o nieodebranych połączeniach i odebranych wiadomościach (w tym od komunikatorów internetowych i klientów sieci społecznościowych). Ponadto lampka ta zwykle sygnalizuje niski poziom naładowania baterii smartfona i zapala się w trakcie procedury uzupełniania baterii. Sposób realizacji wskaźnika powiadomień może się różnić: dla niektórych telefonów jest jednokolorowy, dla innych posiada kolorowe kodowanie sygnałów, które można elastycznie regulować dla określonych wydarzeń poprzez menu ustawień. Wskaźnik umożliwia wizualną ocenę obecności przychodzących powiadomień bez konieczności włączania ekranu smartfona.

- Przycisk połączenia alarmowego. Osobny przycisk, przeznaczony do użycia w nagłych wypadkach. Konkretna funkcjonalność takiego przycisku może się różnić w zależności od modelu: wysyłanie „alarmujących” SMS-ów na wybrane numery, automatyczne odbieranie połączeń z tych numerów lub dzwonienie po kolei, włączanie syreny itp. W każdym przypadku przycisk alarmowy jest zwykle dobrze widoczny, a jego obecność jest szczególnie przydatna, gdy telefon jest używany przez osobę starszą (w rzeczywistości w specjalistycznych urządzeniach przeznaczonych dla osób w podeszłym wieku funkcja ta jest wręcz obowiązkowa).

- Redukcja szumów. Filtr elektroniczny, który oczyszcza głos użytkownika z zewnętrznego hałasu (odgłosy ulicy, szum wiatru w kratce mikrofonu itp.). Tym samym rozmówca na drugim końcu linii słyszy tylko głos, praktycznie bez zbędnych dźwięków. Oczywiście żaden system redukcji szumów nie jest doskonały; jednak w większości przypadków funkcja ta znacznie poprawia jakość głosu przekazywanego przez telefon do rozmówcy.

- Żyroskop. Urządzenie, które śledzi obroty telefonu komórkowego w przestrzeni. Współczesne żyroskopy z reguły pracują na wszystkich trzech osiach i są w stanie rozpoznać zarówno kąt, jak i prędkość obrotu; dodatkowo funkcja ta niemalże zawsze zakłada obecność akcelerometru, który pozwala (między innymi) określić wstrząsy i nagłe przesunięcia obudowy. Zapewnia to zaawansowane możliwości sterowania - w szczególności nie da się obejść bez żyroskopów przy pracy z rozszerzoną rzeczywistością (patrz wyżej) lub przy korzystaniu z okularów VR, w których umieszcza się smartfon.

- Pełnowartościowa latarka. Obecność w telefonie zaawansowanej latarki - mocniejszej i bardziej funkcjonalnej niż zwykła (patrz wyżej). Konkretna konstrukcja i możliwości takiej latarki mogą się różnić. Tak więc, w niektórych urządzeniach w górnym rogu znajduje się osobna dioda LED (lub zestaw diod LED), to źródło światła służy wyłącznie jako latarka. W tych innych (głównie smartfonach) chodzi o specjalną konstrukcję lampy błyskowej: która składa się z kilku diod LED, z których tylko niektóre są zwykle używane do oświetlenia przy nagrywaniu, a wszystkie na raz włączają się przy uruchomieniu latarki. Dodatkowa funkcjonalność takiego źródła światła może obejmować wskaźnik laserowy, ogniskowanie wiązki, sterowanie jasnością itp. W każdym razie większość modeli z tą funkcją należy do wytrzymałych urządzeń o podwyższonej odporności na kurz, wilgoć i uderzenia (są jednak wyjątki).

- Czujnik światła. Czujnik, monitorujący poziom światła w otoczeniu. Służy głównie do automatycznej regulacji jasności ekranu: w jasnym otoczeniu jasność podnosi się, aby obraz pozostawał widoczny, a o zmierzchu i ciemności maleje, co oszczędza energię baterii i zmniejsza zmęczenie oczu.

- Barometr. Czujnik do pomiaru ciśnienia atmosferycznego. Sam barometr określa tylko ciśnienie w czasie rzeczywistym, lecz sposoby wykorzystania tych danych mogą się różnić w zależności od oprogramowania zainstalowanego w telefonie. Na przykład niektóre aplikacje nawigacyjne mogą określać różnicę wysokości między poszczególnymi punktami na ziemi na podstawie różnicy ciśnienia atmosferycznego w tych punktach; a w programach meteorologicznych dane barometryczne mogą poprawić dokładność prognoz pogody. Funkcja ta przyda się również osobom wrażliwym na pogodę: sygnalizuje zmianę pogody, pozwalając dokładniej określić przyczynę dolegliwości i podjąć działania w celu ich wyeliminowania.
Dynamika cen
Xiaomi Redmi 13C często porównują
Poco C65 często porównują