Темна версія
Польща
Каталог   /   Комп'ютерна техніка   /   Комплектуючі   /   Системи охолодження

Порівняння be quiet! Pure Rock vs Cooler Master Hyper 212 EVO

Додати до порівняння
be quiet! Pure Rock
Cooler Master Hyper 212 EVO
be quiet! Pure RockCooler Master Hyper 212 EVO
від 438 zł
Товар застарів
Порівняти ціни 1
ТОП продавці
Головне
Призначеннядля процесорадля процесора
Типактивний кулерактивний кулер
Видування повітряного потокувбік (розсіювання)вбік (розсіювання)
Максимальний TDP150 Вт
Вентилятор
Кількість вентиляторів1 шт1 шт
Діаметр вентилятора120 мм120 мм
Тип підшипникаковзання (Sleeve Bearing)ковзання
Мінімальні оберти600 об/хв
Максимальні оберти1500 об/хв1600 об/хв
Регулятор обертівавто (PWM)авто (PWM)
Макс. повітряний потік87 CFM66.3 CFM
Статичний тиск1.7 мм H2O
Напрацювання на відмову80 тис. год40 тис. год
Можливість заміни
Рівень шуму27 дБ31 дБ
Джерело живлення4-pin4-pin
Радіатор
Теплових трубок4 шт4 шт
Контакт теплотрубокнепрямийпрямий
Матеріал радіатораалюміній/мідьалюміній/мідь
Матеріал підкладкинікельована мідьалюміній
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
 
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
 
 
Intel 1151 / 1151 v2
Intel 1200
Інше
Тип кріпленнядвосторонній (backplate)двосторонній (backplate)
Габарити88x121x155 мм120x80x159 мм
Висота155 мм159 мм
Вага660 г580 г
Дата додавання на E-Katalogлютий 2016травень 2012

Максимальний TDP

Максимальний TDP, який забезпечується системою охолодження. Відзначимо, що даний параметр вказується тільки для рішень, оснащених радіаторами (див. «Тип»); для окремо виконаних вентиляторів ефективність визначається іншими параметрами, насамперед значеннями повітряного потоку (див. вище).

TDP можна описати як кількість тепла, яке система охолодження здатна відвести від обслуговуваного компонента. Відповідно, для нормальної роботи всієї системи потрібно, щоб TDP системи охолодження був не нижче тепловиділення цього компонента (дані по тепловиділенню зазвичай зазначаються докладні характеристики комплектуючих). А краще всього підбирати охолоджувачі з запасом по потужності хоча б у 20 – 25 % — це дасть додаткову гарантію на випадок форсованих режимів роботи і нештатних ситуацій (у тому числі засмічення корпусу і зниження ефективності повітрообміну).

Що стосується конкретних чисел, то найбільш скромні сучасні системи охолодження забезпечують TDP до 100 Вт, найбільш прогресивні — до 250 Вт і навіть вище.

Тип підшипника

Тип підшипника, що використовується у вентиляторі (вентиляторах) системи охолодження.

Підшипник – це деталь між віссю вентилятора, що обертається, і нерухомою основою, яка підтримує вісь і знижує тертя. У сучасних вентиляторах зустрічаються такі типи підшипників:

Ковзання. Дія таких підшипників заснована на прямому контакті між двома суцільними поверхнями, ретельно відполірованими для зниження тертя. Подібні пристосування прості, надійні і довговічні, проте ефективність їх досить невисока — кочення, а тим більше гідродинамічний і магнітний принцип роботи (див. нижче) забезпечують значно менше тертя.

Кочення. Також називаються «кульковими підшипниками» оскільки «посередниками» між віссю обертання і нерухомою основою є кульки (рідше — циліндричні ролики), закріплені в спеціальному кільці. При обертанні осі такі кульки котяться між нею і основою, за рахунок чого сила тертя виходить дуже невисокою — помітно нижче, ніж в підшипниках ковзання. З іншого боку, конструкція виходить дорожчою і складнішою, а за надійністю вона дещо поступається як тим же підшипникам ковзання, так і більш прогресивним гідродинамічним пристосуванням (див. нижче). Тому, хоча підшипники кочення в наш час досить широко поширені, проте в цілому вони зустрічаються помітно рідше згаданих різновидів.

Гідродинамічний. Підшипники цього типу заповнені спец...іальною рідиною; при обертанні вона створює прошарок, по якому ковзає рухома частина підшипника. Таким чином вдається уникнути безпосереднього контакту між твердими поверхнями і значно знизити тертя в порівнянні з попередніми типами. Також такі підшипники тихо працюють і вельми надійні. З їх недоліків можна відзначити порівняно високу вартість, проте на практиці цей момент нерідко виявляється непомітним на тлі ціни всієї системи. Тому даний варіант в наш час надзвичайно популярний, його можна зустріти в системах охолодження всіх рівнів — від бюджетних до прогресивних.

Магнітне центрування. Підшипники, засновані на принципі магнітної левітації: вісь, що обертається, «підвішена» в магнітному полі. Таким чином вдається (як і в гідродинамічних) уникнути контакту між твердими поверхнями і ще більше знизити тертя. Вважаються найбільш прогресивним типом підшипників, надійні і безшумні, проте коштують дорого.

Мінімальні оберти

Найменші оберти, на яких здатний працювати вентилятор системи охолодження. Вказуються тільки для моделей, що мають регулятор оборотів (див. нижче).

Чим нижче мінімальні оберти (при тому ж максимумі) — тим ширше діапазон регулювання швидкості і тим сильніше можна уповільнити вентилятор, коли висока продуктивність не потрібна (таке уповільнення дозволяє знизити споживання енергії і рівень шуму). З іншого боку, великий діапазон відповідним чином позначається на вартості.

Максимальні оберти

Найбільші оберти, на яких здатен працювати вентилятор системи охолодження; для моделей без регулятора обертів (див. нижче) у цьому пункті зазначається штатна швидкість обертання. У найбільш «повільних» сучасних вентиляторах максимальна швидкість не перевищує 1000 об/хв, в самих «швидких» може становити до 2500 об/хв і навіть більше .

Відзначимо, що даний параметр щільно пов'язаний з діаметром вентилятора (див. вище): чим менше діаметр, тим вище повинні бути оберти для досягнення потрібних значень повітряного потоку. При цьому швидкість обертання безпосередньо впливає на рівень шуму і вібрацій. Тому вважається, що потрібний об'єм повітря найкраще забезпечувати великими і порівняно «повільними» вентиляторами; а «швидкі» невеликі моделі має сенс застосовувати там, де компактність має вирішальне значення. Якщо ж порівнювати по швидкості моделі однакового розміру, то більш високі оберти позитивно позначаються на продуктивності, проте підвищують не тільки рівень шуму, а також ціну та енергоспоживання.

Макс. повітряний потік

Максимальний повітряний потік, що може створити вентилятор системи охолодження; вимірюється в CFM - кубічних футах за хвилину.

Чим вище кількість CFM - тим ефективніший вентилятор. З іншого боку, висока продуктивність вимагає або великого діаметра (що позначається на габаритах та вартості), або високої швидкості (а вона підвищує рівень шуму та вібрацій). Тому при виборі має сенс не гнатися за максимальним повітряним потоком, а скористатися спеціальними формулами, що дозволяють розрахувати необхідне кількість CFM залежно від типу та потужності компонента, що охолоджується, та інших параметрів. Такі формули можна знайти у спеціальних джерелах. Що ж до конкретних чисел, то найбільш скромних системах продуктивність вбирається у 30 CFM, а найбільш потужних може становити понад 80 CFM.

Також варто враховувати, що фактичне значення повітряного потоку на найбільших оборотах зазвичай нижче за заявлений максимальний; докладніше див. «Статичний тиск».

Статичний тиск

Максимальне статичний тиск повітря, що створюється вентилятором під час роботи.

Даний параметр вимірюється наступним чином: якщо вентилятор встановити на глухий трубі, звідки немає виходу повітря, і включити на вдув, то досягнуте в трубі тиск і буде відповідати статичного. На практиці цей параметр визначає загальну ефективність роботи вентилятора: чим вище статичний тиск (за інших рівних умов) — тим простіше вентилятору «проштовхнути» потрібний об'єм повітря через простір з високим опором, наприклад, через вузькі прорізи радіатора або через набитий комплектуючими корпус.

Також даний параметр використовується при деяких специфічних обчисленнях, однак ці обчислення доволі складні і рядовому користувачеві, зазвичай, не потрібні — вони пов'язані з нюансами, актуальними переважно для ентузіастів-комп'ютерників. Детальніше про це можна прочитати в спеціальних джерелах.

Напрацювання на відмову

Загальний час, який вентилятор системи охолодження здатний гарантовано пропрацювати до виходу з ладу. Зазначимо, що при вичерпанні цього часу пристрій не обов'язково зламається — зазвичай сучасні вентилятори мають значний запас міцності і здатні пропрацювати ще якийсь період. Водночас оцінювати загальну довговічність системи охолодження варто саме за цим параметром.

Рівень шуму

Стандартний рівень шуму, створюваного системою охолодження під час роботи. Зазвичай в цьому пункті вказується максимальний шум при штатному режимі роботи, без перевантажень і іншого «екстриму».

Відзначимо, що рівень шуму позначається в децибелах, а це нелінійна величина. Так що оцінювати фактичну гучність простіше всього по порівняльних таблиць. Ось така таблиця для значень, що зустрічаються в сучасних системах охолодження:

20 дБ — ледь чутний звук (тихий шепіт людини на відстані близько 1 м, звуковий фон на відкритому полі за містом в безвітряну погоду);
25 дБ — дуже тихо (звичайний шепіт на відстані 1 м);
30 дБ — тихо (настінний годинник). Саме такий шум за санітарними нормами є максимально допустимим для постійних джерел звуку в нічний час (з 23.00 до 7.00). Це означає, що якщо комп'ютером планується сидіти вночі — бажано, щоб гучність системи охолодження не перевищувала даного значення.
35 дБ — розмова упівголоса, звуковий фон в тихій бібліотеці;
40 дБ — розмова, порівняно неголосна, але вже в повний голос. Максимально допустимий за санітарними нормами рівень шуму для житлових приміщень в денний час, з 7.00 до 23.00. Втім, навіть найбільш галасливі системи охолодження зазвичай не дотягують до цього показника, максимум для подібної техніки становить близько 38 – 39 дБ.

Контакт теплотрубок

Тип контакту між тепловими трубками, передбаченими в радіаторі системи охолодження, і охолоджуваними компонентами (зазвичай CPU). Детальніше про теплотрубках див. вище, а види контакту можуть бути наступними:

Непрямий. Класичний варіант конструкції: теплові трубки проходять через металеву (зазвичай алюмінієвий) підошву, яка безпосередньо прилягає до поверхні чипу. Перевагою такого контакту є максимально рівномірний розподіл тепла між трубками, причому незалежно від фізичного розміру самого чипу (головне, щоб він не був більше підошви). Водночас додаткова деталь між процесором і трубками неминуче збільшує тепловий опір і трохи знижує загальну ефективність охолодження. У багатьох системах, особливо висококласних, цей недолік компенсується різними конструктивними рішеннями (насамперед максимально щільним з'єднанням трубок з підошвою), однак це, зі свого боку, впливає на вартість.

Прямий. При прямому контакті теплові трубки безпосередньо прилягають до охолоджуваного чипу, без додаткової підошви; для цього поверхню трубок з потрібної сторони сточується до площини. Завдяки відсутності проміжних деталей тепловий опір в місцях прилягання трубок виходить мінімальним, і водночас сама конструкція радіатора виявляється більш простій і недорогий, ніж при непрямому контакті. З іншого боку, між тепловими трубками є зазори, іноді досить значні — в результаті поверхня обслуговуваного чипу охолодж...ується нерівномірно. Це частково компенсується наявністю підкладки (в даному випадку вона заповнює ці проміжки) і застосуванням термопасти, однак по рівномірності відводу тепла прямий контакт все одно неминуче поступається непрямому. Тому даний варіант зустрічається переважно в недорогих кулерах, хоча може застосовуватися і в досить продуктивні рішення.
Динаміка цін
be quiet! Pure Rock часто порівнюють