Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie ARCTIC Freezer 34 eSports DUO vs be quiet! Pure Rock

Dodaj do porównania
ARCTIC Freezer 34 eSports DUO
be quiet! Pure Rock
ARCTIC Freezer 34 eSports DUObe quiet! Pure Rock
Porównaj ceny 29
od 438 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
TDP 210 W. Poziom hałasu 28 dB.
Podstawowe
Przeznaczeniedo procesorado procesora
Rodzajchłodzenie CPUchłodzenie CPU
Wentylator
Liczba wentylatorów2 szt.1 szt.
Średnica wentylatora120 mm120 mm
Rodzaj łożyskahydrodynamiczneślizgowe
Min. prędkość obrotowa200 obr./min
Maks. prędkość obrotowa2100 obr./min1500 obr./min
Regulacja obrotówautomatyczna (PWM)automatyczna (PWM)
Maks. przepływ powietrza87 CFM
Średni czas bezawaryjnej pracy80 tys. h
TDP210 W150 W
Wydmuch powietrzaw bok (rozpraszanie)
Możliwość wymiany
Poziom hałasu27 dB
Radiator
Liczba rurek cieplnych4 szt.4 szt.
Kontakt rurek cieplnychbezpośrednipośredni
Materiał radiatoraaluminium / miedźaluminium / miedź
Materiał podstawyaluminiummiedź niklowana
Socket
 
AMD AM4
 
Intel 1150
Intel 1155/1156
 
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Dane ogólne
Typ podłączenia4-pin4-pin
Rodzaj mocowaniadwustronne (backplate)dwustronne (backplate)
Wymiary124x103x157 mm88x121x155 mm
Wysokość157 mm155 mm
Waga764 g660 g
Data dodania do E-Katalogsierpień 2019luty 2016

Liczba wentylatorów

Liczba wentylatorów w konstrukcji układu chłodzenia. Większa liczba wentylatorów zapewnia wyższą wydajność (pod warunkiem, że pozostałe parametry są identyczne); z drugiej strony odpowiednio zwiększają się wymiary i hałas podczas pracy. Ponadto zauważamy, że jeżeli inne cechy są podobne, mniejsza liczba dużych wentylatorów jest uważana za bardziej zaawansowany wariant niż większa liczba małych; zobacz "Średnica wentylatora", aby uzyskać szczegółowe informacje.

Rodzaj łożyska

Rodzaj łożyska zastosowanego w wentylatorach (wentylatorze) układu chłodzenia.

Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:

- Ślizgowe. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie części są proste, niezawodne i trwałe, lecz ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania (patrz niżej) zapewniają znacznie mniejsze tarcie.

- Toczne. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności jest nieco gorsza zarówno od łożysk ślizgowych, jak i bardziej zaawansowanych urządzeń hydrodynamicznych (patrz poniżej). Choć łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wyżej wymienione odmiany.

- Hydrodynamiczny .... Łożyska tego typu wypełnione są specjalnym płynem; obracając się tworzy on warstwę, po której ślizga się ruchoma część łożyska. W ten sposób można uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znacznie zmniejszyć tarcie w porównaniu z poprzednimi odmianami. Ponadto łożyska te są ciche i bardzo niezawodne. Wśród ich wad można zaznaczyć stosunkowo wysoki koszt, jednak w praktyce punkt ten często okazuje się niewidoczny na tle kosztu całego układu. Dlatego ten wariant jest w naszych czasach niezwykle popularny, występuje on w układach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.

- Centrowanie magnetyczne . Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane są za najbardziej zaawansowany rodzaj łożysk, są niezawodne i ciche, lecz są drogie.

Min. prędkość obrotowa

Najniższa prędkość, przy której może działać wentylator chłodzący. Jest wskazywana tylko dla modeli z regulatorem prędkości (patrz poniżej).

Im niższa prędkość minimalna (przy tym samym maksimum) - tym szerszy jest zakres regulacji prędkości i tym bardziej możesz spowolnić wentylator, gdy duża wydajność nie jest potrzebna (takie spowolnienie pozwala zmniejszyć zużycie energii i poziom hałasu). Z drugiej strony szeroki zakres ma odpowiedni wpływ na koszt.

Maks. prędkość obrotowa

Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość nie przekracza 1000 obr./min, w „najszybszych” może to być do 2500 obr./min, a nawet więcej.

Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.

Maks. przepływ powietrza

Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.

Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet więcej.

Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.

Średni czas bezawaryjnej pracy

Całkowity czas, przez który wentylator chłodzący nie ulegnie awarii. Należy pamiętać, że po wyczerpaniu tego czasu urządzenie niekoniecznie ulegnie zepsuciu – wiele współczesnych wentylatorów ma znaczny zapas wytrzymałości i jest w stanie pracować jeszcze przez jakiś czas. Przy tym, warto oceniać ogólną trwałość układu chłodzenia właśnie według tego parametru.

TDP

Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).

TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).

Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP do 100 W, najbardziej zaawansowane — do 250 W i nawet więcej.

Wydmuch powietrza

Kierunek, w którym strumień powietrza wychodzi z chłodnicy aktywnej (patrz „Rodzaj”).

Parametr ten dotyczy przede wszystkim modeli używanych z procesorami, warianty mogą być następujące:

— W bok (rozpraszanie). Ten format pracy jest typowy dla chłodnic o tzw. konstrukcji wieżowej. W takich modelach wentylator jest instalowany prostopadle do podłoża stykającego się z procesorem, dzięki czemu strumień powietrza porusza się równolegle do płyty głównej. Zapewnia to maksymalną wydajność: ogrzane powietrze nie wraca do procesora i innych elementów systemu, lecz jest rozpraszane w obudowie (i prawie natychmiast wychodzi na zewnątrz, jeśli komputer ma przynajmniej jeden wentylator obudowy). Główną wadą tego wariantu jest wysoka wysokość konstrukcji, która może skomplikować jej umieszczenie w niektórych obudowach. Jednak w większości przypadków ten punkt nie jest kluczowy – zwłaszcza jeśli chodzi o potężny układ chłodzenia przeznaczony do zaawansowanego systemu z wydajnym „gorącym” procesorem. Tak więc to właśnie rozpraszanie poprzeczne jest obecnie najpopularniejszym wariantem - zwłaszcza w chłodnicach o maksymalnym TDP 150 W i wyższym (choć mniej wydajne modele często używają tego układu).

— W dół (na płytę główną). Ten format pracy pozwala na „ułożenie” wentylatora wraz z radiatorem prosto na płycie głównej, znacznie zmniejszając wysokość całej chłodnicy (w porównaniu do modeli wykorzystujących nadmuch boczny). Z drugiej strony ten format pracy nie...jest zbyt wydajny – wszak zanim rozproszy się po obudowie, gorące powietrze znów obdmuchuje płytę z procesorem. Tak więc w dzisiejszych czasach ten wariant jest stosunkowo rzadki i występuje głównie w chłodnicach o małej mocy i dopuszczalnym TDP do 150 W. A na takie modele należy zwracać uwagę głównie wtedy, gdy w obudowie jest mało miejsca, a niska wysokość chłodnicy jest ważniejsza niż wysoka wydajność.

Poziom hałasu

Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.

Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:

20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.
Dynamika cen
ARCTIC Freezer 34 eSports DUO często porównują
be quiet! Pure Rock często porównują