Podświetlenie LED
Obecność na płycie głównej własnego
podświetlenia LED. Funkcja ta nie wpływa na funkcjonalność płyty głównej, ale nadaje jej niecodzienny wygląd. Dlatego nie ma sensu, aby zwykły użytkownik specjalnie szukał takiego modelu (potrzebuje
płyty głównej bez podświetlenia), ale dla miłośników modowania podświetlenie może być bardzo przydatne.
Podświetlenie LED może mieć postać osobnych świateł lub pasków LED, wykonane w różnych kolorach (czasem z możliwością wyboru kolorów) i obsługiwać dodatkowe efekty - mruganie, migotanie, synchronizację z innymi komponentami (patrz „Synchronizacja podświetlenia”) itp. Specyficzne możliwości zależą od modelu płyty głównej.
Synchronizacja podświetlenia
Technologia synchronizacji przewidziana na płycie z podświetleniem LED (patrz wyżej).
Sama synchronizacja pozwala „dopasować” podświetlenie płyty głównej do podświetlenia innych elementów systemu - obudowy, karty graficznej, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać / wyłączać itp. Konkretne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoje własne (Mystic Light Sync od MSI, RGB Fusion od Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty od jednego producenta.
Maks. wielkość pamięci
Maksymalna ilość pamięci RAM, którą można zainstalować na płycie głównej.
Wybierając według tego parametru, ważne jest, aby wziąć pod uwagę planowane wykorzystanie komputera i rzeczywiste potrzeby użytkownika. Tak więc woluminy
do 32 GB włącznie wystarczą, aby rozwiązać wszelkie podstawowe problemy i wygodnie uruchamiać gry, ale bez znacznej rezerwy na aktualizację.
64 GB to optymalna opcja w wielu zastosowaniach profesjonalnych, a w przypadku zadań wymagających dużej ilości zasobów, takich jak renderowanie 3D,
96 GB, a nawet
128 GB pamięci nie będzie limitem. Najbardziej „pojemne” płyty główne są kompatybilne z wolumenami
192 GB i
więcej - są to głównie najwyższej klasy rozwiązania dla serwerów i HEDT (patrz „W kierunku”).
Możesz wybrać ten parametr z rezerwą - biorąc pod uwagę potencjalną rozbudowę pamięci RAM, ponieważ zainstalowanie dodatkowych kości RAM to najprostszy sposób na zwiększenie wydajności systemu. Biorąc ten czynnik pod uwagę, wiele stosunkowo prostych płyt głównych obsługuje bardzo duże ilości pamięci RAM.
Obsługa XMP
Możliwość pracy płyty głównej z modułami pamięci RAM obsługującymi technologię
XMP (Extreme Memory Profiles). Technologia ta została opracowana przez firmę Intel; jest stosowana w płytach głównych i jednostkach pamięci RAM i działa tylko wtedy, gdy oba te elementy systemu są kompatybilne z XMP. Podobna technologia AMD nosi nazwę AMP.
Główną funkcją XMP jest ułatwienie przetaktowania systemu ("overclockinging"): specjalne profile przetaktowania są wcześniej „wszyte" w pamięć dzięki tej technologii, i w razie potrzeby, użytkownik może wybrać tylko jeden z tych profili bez stosowania skomplikowanych procedur konfiguracji. Jest to nie tylko łatwiejsze, ale także bezpieczniejsze: każdy profil dodany do paska przechodzi test stabilności działania.
Liczba gniazd PCI-E 1x
Liczba gniazd PCI-E (PCI-Express) 1x zainstalowanych na płycie głównej. Dostępne są
płyty główne z 1 slotem PCI-E 1x,
2 slotami PCI-E 1x,
3 portami PCI-E 1x i jeszcze więcej.
Magistrala PCI Express służy do łączenia różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Liczba w tytule wskazuje na liczbę torów PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. W związku z tym PCI-E 1x jest podstawową, najwolniejszą wersją tego interfejsu. Szybkość przesyłania danych dla takich gniazd zależy od wersji PCI-E (patrz „Obsługa PCI Express”): w szczególności jest to nieco mniej niż 1 GB/s dla wersji 3.0 i nieco mniej niż 2 GB/s dla 4.0.
Osobno podkreślamy, że ogólna zasada dla PCI-E jest następująca: płyta musi być podłączona do gniazda o tej samej lub większej liczbie linii. Dzięki temu tylko karty na jednej linii będą kompatybilne z PCI-E 1x.
Moduł TPM
Specjalistyczne
złącze TPM do podłączenia modułu szyfrującego.
Moduł TPM (Trusted Platform Module) umożliwia szyfrowanie danych przechowywanych na komputerze za pomocą unikalnego klucza, który jest prawie nie do złamania (jest to niezwykle trudne do zrobienia). Klucze są przechowywane w samym module i są niedostępne z zewnątrz, a dane można zabezpieczyć w taki sposób, aby ich normalne odszyfrowanie było możliwe tylko na tym samym komputerze, na którym zostały zaszyfrowane (i tym samym oprogramowaniem). Tak więc, jeśli informacje zostaną nielegalnie skopiowane, atakujący nie będzie mógł uzyskać do nich dostępu, nawet jeśli oryginalny moduł TPM z kluczami szyfrowania zostanie skradziony: TPM rozpozna zmianę systemu i nie pozwoli na odszyfrowanie.
Z technicznego punktu widzenia moduły szyfrujące mogą być wbudowane bezpośrednio na płyty główne, jednak nadal bardziej uzasadnione jest uczynienie ich oddzielnymi urządzeniami: wygodniej jest kupić moduł TPM w razie potrzeby, zamiast przepłacać za natywnie wbudowaną funkcję, która może okazać się niepotrzebna. Z tego powodu istnieją płyty główne
bez złącza TPM.
RGB LED strip
Złącze do podłączenia ozdobnych taśm LED i innych urządzeń z sygnalizacją LED. Pozwala kontrolować podświetlenie obudowy przez płytę główną i dostosować blask do swoich zadań, m.in. zsynchronizuj go z innymi komponentami.
Wyjście D-Sub (VGA)
Obecność na płycie głównej własnego wyjścia
D-Sub (VGA).
Takie wyjście jest przeznaczone do transmisji wideo ze zintegrowanej karty graficznej (patrz wyżej) lub procesora ze zintegrowaną grafiką (podkreślamy, że niemożliwe jest przesłanie do niego sygnału z dedykowanej karty graficznej przez chipset płyty głównej). Jeśli chodzi o VGA, jest to standard analogowy pierwotnie stworzony dla monitorów CRT. Nie wyróżnia się jakością obrazu, prawie nie nadaje się do rozdzielczości wyższych niż 1280x1024 i nie zapewnia transmisji dźwięku, dlatego jest powszechnie uważany za przestarzały. Jednak ten rodzaj wejścia jest nadal używany w samodzielnych monitorach, telewizorach, projektorach itp.; tak więc wśród płyt głównych można znaleźć modele z takimi wyjściami.
Wersja HDMI
Wersja gniazda HDMI (patrz wyżej), znajdującego się na płycie głównej.
— v.1.4. Najwcześniejszy standard znany w naszych czasach, pojawił się jeszcze w 2009 roku. Obsługuje rozdzielczości do 4096x40962160włącznie i pozwala na odtwarzanie Full HD z szybkością do 120 kl./s — wystarczy nawet do odtwarzania 3D.
— v.1.4 b. Zmodyfikowana odmiana opisanej powyżej v.1.4, przedstawia szereg mniejszych aktualizacji i ulepszeń, w szczególności obsługę dwóch dodatkowych formatów 3D.
— v.2.0. Wersja, znana również jako HDMI UHD — właśnie w tej wersji została wprowadzona pełna obsługa 4K z szybkością do 60 kl./s, a także możliwość pracy z ultra panoramicznym wideo 21:9. Ponadto, dzięki zwiększonej przepustowości liczba jednocześnie odtwarzanych kanałów audio wzrosła do 32, a strumieni audio — do 4. A w poprawionej v.2.0a do tego wszystkiego dodano jeszcze wsparcie dla HDR.
— v.2.1. Jeszcze jedna nazwa — HDMI Ultra High Speed. W porównaniu z poprzednią wersją przepustowość interfejsu naprawdę znacznie wzrosła –potrafi transmitować wideo w rozdzielczościach aż do 10K przy 120 klatkach na sekundę, a także do pracy z rozszerzoną przestrzenią kolorów BT.2020 (te ostatnie mogą być przydatne do niektórych profesjonalnych zadań). Aby korzystać ze wszystkich funkcji HDMI v2.1 potrzebne kable typu HDMI Ultra High Speed, jednak funkcje wcześniejszych standardów są dostępne i ze zwykłymi kablami.