Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie Deepcool Lucifer V2 vs Thermalright Macho Rev.B

Dodaj do porównania
Deepcool Lucifer V2
Thermalright Macho Rev.B
Deepcool Lucifer V2Thermalright Macho Rev.B
od 518 zł
Produkt jest niedostępny
Porównaj ceny 3
Opinie
0
0
0
4
0
0
0
1
TOP sprzedawcy
Główne
Nadaje się do gniazda AM4 tylko ze specjalnym adapterem, który musi mieć odpowiednią naklejkę na pudełku. Tryb pasywny z TDP 130 W. Maksymalne TDP 300 W. Cichy wentylator. 6 rurek cieplnych.
Podstawowe
Przeznaczeniedo procesorado procesora
Rodzajchłodzenie CPUchłodzenie CPU
Wydmuch powietrzaw bok (rozpraszanie)w bok (rozpraszanie)
TDP300 W240 W
Wentylator
Liczba wentylatorów1 szt.1 szt.
Średnica wentylatora140 mm140 mm
Rodzaj łożyskahydrodynamicznetoczne
Min. prędkość obrotowa300 obr./min300 obr./min
Maks. prędkość obrotowa1400 obr./min1300 obr./min
Regulacja obrotówautomatyczna (PWM)automatyczna (PWM)
Maks. przepływ powietrza81.33 CFM73.5 CFM
Ciśnienie statyczne1.56 mm H2O
Możliwość wymiany
Min. poziom hałasu12 dB15 dB
Poziom hałasu31 dB21 dB
Typ podłączenia4-pin4-pin
Radiator
Liczba rurek cieplnych6 szt.6 szt.
Kontakt rurek cieplnychpośredni
Materiał radiatoraaluminium / miedźaluminium / miedź
Materiał podstawymiedź niklowana
Miejsce na pamięć RAM43 mm
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Dane ogólne
Rodzaj mocowaniadwustronne (backplate)dwustronne (backplate)
Wymiary140x136x168 mm152x129x162 mm
Wysokość168 mm162 mm
Waga1079 g880 g
Data dodania do E-Kataloglistopad 2017luty 2016

TDP

Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).

TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).

Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP do 100 W, najbardziej zaawansowane — do 250 W i nawet więcej.

Rodzaj łożyska

Rodzaj łożyska zastosowanego w wentylatorach (wentylatorze) układu chłodzenia.

Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:

- Ślizgowe. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie części są proste, niezawodne i trwałe, lecz ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania (patrz niżej) zapewniają znacznie mniejsze tarcie.

- Toczne. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności jest nieco gorsza zarówno od łożysk ślizgowych, jak i bardziej zaawansowanych urządzeń hydrodynamicznych (patrz poniżej). Choć łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wyżej wymienione odmiany.

- Hydrodynamiczny .... Łożyska tego typu wypełnione są specjalnym płynem; obracając się tworzy on warstwę, po której ślizga się ruchoma część łożyska. W ten sposób można uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znacznie zmniejszyć tarcie w porównaniu z poprzednimi odmianami. Ponadto łożyska te są ciche i bardzo niezawodne. Wśród ich wad można zaznaczyć stosunkowo wysoki koszt, jednak w praktyce punkt ten często okazuje się niewidoczny na tle kosztu całego układu. Dlatego ten wariant jest w naszych czasach niezwykle popularny, występuje on w układach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.

- Centrowanie magnetyczne . Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane są za najbardziej zaawansowany rodzaj łożysk, są niezawodne i ciche, lecz są drogie.

Maks. prędkość obrotowa

Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość nie przekracza 1000 obr./min, w „najszybszych” może to być do 2500 obr./min, a nawet więcej.

Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.

Maks. przepływ powietrza

Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.

Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet więcej.

Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.

Ciśnienie statyczne

Maksymalne statyczne ciśnienie powietrza generowane przez wentylator podczas pracy.

Parametr ten mierzony jest w następujący sposób: jeżeli wentylator jest zainstalowany na rurze zaślepionej, z której nie ma wylotu powietrza, i ustawiony do nadmuchu, to ciśnienie osiągane w rurze będzie odpowiadało ciśnieniu statycznemu. W praktyce parametr ten określa całkowitą sprawność wentylatora: im wyższe ciśnienie statyczne (pozostałe parametry są takie same), tym łatwiej wentylatorowi „przepychać” wymaganą ilość powietrza przez przestrzeń o dużym oporze, np. przez wąskie szczeliny radiatora lub przez obudowę wypełnioną podzespołami.

Parametr ten również jest używany w niektórych specyficznych obliczeniach, jednak obliczenia te są dość skomplikowane i zwykły użytkownik z reguły nie jest potrzebny - są one związane z kwestiami, które są istotne głównie dla entuzjastów komputerowych. Więcej na ten temat można przeczytać w specjalnych źródłach.

Min. poziom hałasu

Najniższy poziom hałasu wytwarzany przez układ chłodzenia podczas pracy.

Parametr ten jest wskazywany tylko dla tych modeli, które mają regulację wydajności i mogą pracować ze zmniejszoną mocą. W związku z tym minimalny poziom hałasu to poziom hałasu w trybie „najcichszym”, deklarowana głośność pracy, która w danym modelu nie może być mniejsza.

Dane te przydadzą się przede wszystkim tym, którzy starają się maksymalnie zmniejszyć poziom hałasu i, co jest nazywane, „walką o każdy decybel”. Należy tu jednak zaznaczyć, że w wielu modelach wartości minimalne wynoszą około 15 dB, a w tych najcichszych – tylko 10 – 11 dB. Ta głośność jest porównywalna do szelestu liści i prawie jest niesłyszalna na tle hałasu otoczenia nawet w pomieszczeniu mieszkalnym w nocy, nie mówiąc już o głośniejszych warunkach, a różnica między 11 a 18 dB w tym przypadku nie jest w żaden sposób znacząca dla ludzkiej percepcji. Tabela porównawcza dla dźwięku zaczynającego się od 20 dB jest podana w sekcji "Poziom hałasu" poniżej.

Poziom hałasu

Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.

Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:

20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.

Kontakt rurek cieplnych

Rodzaj kontaktu między rurkami cieplnymi znajdującymi się w radiatorze układu chłodzenia a chłodzonymi podzespołami (zwykle procesorem). Aby uzyskać więcej informacji na temat rurek cieplnych, patrz powyżej, a rodzaje kontaktu mogą być następujące:

- Pośredni. Klasyczna konstrukcja: rurki cieplne przechodzą przez metalową (zwykle aluminiową) podeszwę, która bezpośrednio przylega do powierzchni chipa. Zaletą tego kontaktu jest najbardziej równomierny rozkład ciepła pomiędzy rurkami i to niezależnie od fizycznych rozmiarów samego chipa (najważniejsze, że nie jest on większy od podeszwy). Jednocześnie dodatkowa część między procesorem a rurkami nieuchronnie zwiększa opór cieplny i nieco zmniejsza ogólną wydajność chłodzenia. W wielu systemach, zwłaszcza high-endowych, tę wadę rekompensują różne rozwiązania konstrukcyjne (przede wszystkim maksymalnie szczelne połączenie rurek z podeszwą), lecz to z kolei wpływa na koszt.

- Bezpośredni. Przy kontakcie bezpośrednim, rurki cieplne przylegają bezpośrednio do schłodzonego chipa, bez dodatkowej podeszwy; w tym celu powierzchnia rurek z pożądanej strony jest szlifowana do płaskości. Ze względu na brak części pośrednich opór cieplny w punktach styku rur jest minimalny, a jednocześnie sama konstrukcja radiatora okazuje się prostsza i tańsza niż w przypadku kontaktu pośredniego. Z drugiej strony między rurkami cieplnymi występują szczeliny, czasem...dość znaczne – w efekcie powierzchnia obsługiwanego chipa jest chłodzona nierównomiernie. Jest to częściowo kompensowane obecnością podłoża (w tym przypadku wypełnia ono te szczeliny) i zastosowaniem pasty termicznej, jednak pod względem równomierności odprowadzania ciepła, kontakt bezpośredni jest nadal nieuchronnie gorszy od kontaktu pośredniego. Dlatego ten wariant spotykany jest głównie w niedrogich chłodnicach, choć może on być również stosowany w dość wydajnych rozwiązaniach.

Materiał podstawy

Materiałem, z którego wykonano podstawę układu chłodzenia, jest powierzchnia stykająca się bezpośrednio z chłodzonym komponentem (najczęściej z procesorem). Parametr ten jest szczególnie ważny w przypadku modeli z rurkami cieplnymi (patrz wyżej), chociaż może być podawany dla chłodnic bez tej funkcji. Warianty mogą być następujące: aluminium, aluminium niklowane, miedź, miedź niklowana. Poniżej podano więcej szczegółów na ich temat.

- Aluminium. Tradycyjny, najpopularniejszy materiał na podstawę. Przy stosunkowo niskich kosztach aluminium ma dobrą przewodność cieplną, jest łatwe do szlifowania (niezbędnego do dokładnego dopasowania) i jest odporne na zarysowania i inne nierówności, a także korozję. Co prawda pod względem skuteczności odprowadzania ciepła materiał ten wciąż ustępuje miedzi - jednak staje się to zauważalne głównie w zaawansowanych systemach, które wymagają jak największej przewodności cieplnej.

- Miedź. Miedź jest znacznie droższa niż aluminium, lecz jest to rekompensowane wyższą przewodnością cieplną, a tym samym wydajnością chłodzenia. Zauważalne wady tego metalu obejmują pewną skłonność do korozji pod wpływem wilgoci i niektórych substancji. Dlatego czysta miedź jest używana stosunkowo rzadko - częściej stosuje się podstawy niklowane (patrz poniżej).

- Miedź niklowana. Podstawa miedziana z...dodatkowym niklowaniem. Taka powłoka zwiększa odporność na korozję i zarysowania, przy czym prawie nie wpływa na przewodność cieplną podstawy oraz wydajność pracy. Co prawda, ta cecha nieco podnosi cenę chłodnicy, lecz występuje ona głównie w high-endowych układach chłodzenia, gdzie ten punkt jest prawie niewidoczny na tle całkowitego kosztu urządzenia.

- Niklowane aluminium. Podstawa aluminiowa z dodatkowym niklowaniem. Ogólnie o aluminium, patrz wyżej, a powłoka zwiększa odporność radiatora na korozję, zarysowania i nierówności. Z drugiej strony ma to wpływ na koszt podczas gdy w praktyce do wydajnej pracy często wystarcza czyste aluminium (zwłaszcza, że sam ten metal jest bardzo odporny na korozję). Dlatego ta odmiana nie zyskała na popularności.
Dynamika cen
Deepcool Lucifer V2 często porównują
Thermalright Macho Rev.B często porównują