Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Dyski twarde

Porównanie Seagate FireCuda ST1000DX002 1 TB vs WD Black 3.5" Gaming Hard Drive WD1003FZEX 1 TB

Dodaj do porównania
Seagate FireCuda ST1000DX002 1 TB
WD Black 3.5" Gaming Hard Drive WD1003FZEX 1 TB
Seagate FireCuda ST1000DX002 1 TBWD Black 3.5" Gaming Hard Drive WD1003FZEX 1 TB
od 1 053 zł
Produkt jest niedostępny
Porównaj ceny 6
TOP sprzedawcy
Główne
Struktura hybrydowa. Inteligentna pamięć podręczna. Wysoka prędkość komponentów HDD.
Wysoka prędkość. 5 lat gwarancji.
Typ dyskuwewnętrznywewnętrzny
Rodzaj dyskuSSHDHDD
Przeznaczeniedo PCdo PC
Pojemność1000 GB1000 GB
Format3.5 "3.5 "
InterfejsSATA3SATA3
Gwarancja producenta5 lat5 lat
Specyfikacja
Pojemność bufora64 MB64 MB
Pojemność pamięci podręcznej NAND8 GB
Sposób zapisuCMR
Prędkość obrotowa7200 obr./min7200 obr./min
Prędkość przesyłu danych150 MB/s
Liczba talerzy1 szt.
Pobór mocy w trybie pracy5.9 W6.8 W
Pobór mocy w trybie czuwania0.63 W6.1 W
Poziom hałasu podczas odczytu30 dB
Poziom hałasu w trybie czuwania29 dB
Średni czas bezawaryjnej pracy300 tys. razy300 tys. razy
Dane ogólne
Wymiary102x147x20 mm147x102x26 mm
Waga400 g450 g
Data dodania do E-Katalogwrzesień 2016styczeń 2014

Rodzaj dysku

Typ, do którego należy dysk. W szerokim sensie do dysków twardych zalicza się kilka typów dysków:

- HDD. Dyski twarde w klasycznym znaczeniu tego słowa to dyski, które zapisują informacje na obracających się płytach magnetycznych. Pomimo pojawienia się bardziej zaawansowanych typów dysków, klasyczne dyski twarde nadal nie tracą popularności ze względu na połączenie imponujących pojemności i niskich kosztów. Ich główne wady to znaczna waga i pobór mocy, a także stosunkowo niska prędkość odczytu i zapisu danych.

- SSHD. Dyski hybrydowe, które łączą w jednej obudowie opisany powyżej dysk HDD i dysk półprzewodnikowy SSD; system traktuje dysk SSHD jako jedno urządzenie. Ideą takiego połączenia jest zwiększenie prędkości odczytu i zapisu, przy zachowaniu głównej zalety dysku twardego – dużych pojemności przy niskim koszcie. W tym celu część półprzewodnikowa dysku SSHD działa jak szybki schowek między systemem a dyskiem twardym; pod względem wydajności takie systemy, choć nie osiągają poziomu pełnoprawnych dysków SSD, są zauważalnie lepsze od tradycyjnych dysków twardych.

- Macierz RAID. Macierze RAID wykonane jako oddzielne urządzenia (zwykle zewnętrzne, patrz „Wykonywanie”). Takie urządzenie składa się z kilku dysków twardych zainstalowanych w jednej obudowie i połączonych w macierz, która jest postrzegana przez system jako pojedynczy dysk. Istnieje kilka typów (poziomów) macierzy...RAID, które różnią się sposobem interakcji dysków w macierzy i odpowiednio specyfiką ich zastosowania. Tak więc w RAID 0 informacje są zapisywane naprzemiennie na każdym dysku, co zwiększa prędkość działania; w RAID 1 każdy dysk jest kopią wszystkich pozostałych, co daje maksymalną odporność na awarie itp. Szczegółowe dane dotyczące poziomów RAID można znaleźć w dedykowanych źródłach. W tym miejscu zwracamy uwagę, że zakup macierzy RAID może być wygodniejszy niż składanie jej z oddzielnie zakupionych dysków: gotowa macierz jest początkowo wyposażona we wszystko, co jest potrzebne i wymaga jedynie minimalnej konfiguracji. Najważniejsze jest, aby przed zakupem wyjaśnić, które poziomy RAID obsługuje wybrany model.

Pojemność pamięci podręcznej NAND

Pojemność pamięci półprzewodnikowej NAND zainstalowanej na dysku SSHD (patrz „Rodzaj dysku”).

Taka pamięć działa jak szybki bufor między systemem a rzeczywistym dyskiem twardym. Z reguły przechowywane są w nim najczęściej używane dane, co przyspiesza późniejszy do nich dostęp; a kiedy dane są zapisywane na dysku, dane te są najpierw przechowywane w buforze, a dopiero potem przesyłane na talerze dysku. Większość wspołczesnych dysków SSHD zawiera 8 GB pamięci półprzewodnikowej, co jest uważane za najbardziej rozsądny kompromis między prędkością a całkowitym kosztem urządzenia.

Sposób zapisu

- CMR (Conventional Magnetic Recording) to klasyczny sposób zapisu magnetycznego charakteryzujący się dużą prędkością dostępu do danych. Dyski twarde CMR są stosowane w systemach, w których ważne jest zapewnienie jak największej (jak to możliwe) prędkości odczytu/zapisu danych. Są to komputery użytkowników, systemy nadzoru wideo itp. Główną wadą dysków twardych CMR jest duża złożoność tworzenia pojemnych dysków, co znajduje odzwierciedlenie w ich cenie. Ponadto dyski HDD z technologią CMR są dość energochłonne.

- SMR (Shingled Magnetic Recording) to obiecujący sposób zapisu magnetycznego. SMR pozwala na wysoką gęstość danych, co z kolei zwiększa pojemność pamięci i obniża wartość rynkową. Dyski twarde SMR charakteryzują się niską prędkością ponownego zapisu danych, dlatego takie dyski pamięci są słabo przystosowane do użycia w systemach komputerowych klientów. Natomiast sprawdziły się dobrze podczas pracy w centrach przetwarzania danych, archiwach i podobnych systemach, dla których niska prędkość zapisu/ponownego zapisu nie jest krytyczna. Jednak niektóre firmy wciąż produkują rozwiązania SMR dla systemów osobistych, a nawet mobilnych. Te dyski twarde wykorzystują zoptymalizowaną technologię zapisu/ponownego zapisu o nazwie Drive-Managed SMR (DM-SMR).

Prędkość przesyłu danych

Prędkość przesyłu danych między dyskiem a urządzeniami klienckimi zależy od typu napędu, prędkości obrotowej, rozmiaru bufora pamięci i złączy połączeniowych. Ostatni parametr jest najważniejszy, ponieważ nie da się przekroczyć przepustowości konkretnego interfejsu.

Liczba talerzy

Liczba talerzy przewidzianych w konstrukcji dysku twardego.

Fizycznie dysk twardy składa się z jednego lub więcej talerzy, na których zapisywane są informacje. Może się zapewniać kilka talerzy w celu uzyskania pożądanej pojemności bez zwiększania współczynnika kształtu. Jednocześnie w takim napędzie musi być również zainstalowana odpowiednia liczba głowic odczytujących, co komplikuje konstrukcję, zmniejsza jego niezawodność i zwiększa jej koszt. Dlatego producenci dobierają liczbę talerzy opierając się na rozsądnym kompromisie między tymi punktami, a przy wyborze parametr ten jest bardziej referencyjnym niż praktycznym.

Pobór mocy w trybie pracy

Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.

Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.

Pobór mocy w trybie czuwania

Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.

Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).

Poziom hałasu podczas odczytu

Poziom hałasu wydawanego przez dysk podczas odczytywania i/lub zapisywania informacji. Źródłem dźwięku w tym przypadku są ruchome talerze dysku, a także mechanika sterująca głowicami czytającymi. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny hałas wydawany przez współczesne dyski twarde podczas pracy wynosi około 50 dB - jest to porównywalne z tłem dźwiękowym w przeciętnym biurze.

Poziom hałasu w trybie czuwania

Poziom hałasu wydawanego przez dysk w stanie bezczynności, gdy nie są wykonywane żadne operacje odczytu i/lub zapisu. Źródłem dźwięku w tym przypadku są talerze – obracają się one cały czas, gdy dysk jest włączony; ponieważ nie jest zaangażowana żadna inna mechanika, hałas w trybie czuwania jest generalnie niższy niż podczas odczytu/zapisu. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny poziom hałasu współczesnych dysków twardych w trybie czuwania wynosi około 40 dB - jest to porównywalne z niską głośnością mowy ludzkiej.
Dynamika cen
Seagate FireCuda często porównują
WD Black 3.5" Gaming Hard Drive często porównują