Polska
Katalog   /   Komputery   /   Podzespoły   /   Dyski twarde

Porównanie Seagate FireCuda ST1000DX002 1 TB vs WD Caviar Blue WD10EALX 1 TB

Dodaj do porównania
Seagate FireCuda ST1000DX002 1 TB
WD Caviar Blue WD10EALX 1 TB
Seagate FireCuda ST1000DX002 1 TBWD Caviar Blue WD10EALX 1 TB
od 1 053 zł
Produkt jest niedostępny
od 850 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
Struktura hybrydowa. Inteligentna pamięć podręczna. Wysoka prędkość komponentów HDD.
Typ dyskuwewnętrznywewnętrzny
Rodzaj dysku
SSHD /SSD: MLC, 8GB/
HDD
Przeznaczeniedo PCdo PC
Pojemność1000 GB1000 GB
Format3.5 "3.5 "
PodłączenieSATA3SATA3
Gwarancja producenta5 lat3 lata
Specyfikacja
Pojemność bufora64 MB32 MB
Pojemność pamięci podręcznej NAND8 GB
Prędkość obrotowa7200 obr./min7200 obr./min
Liczba talerzy1 szt.
Pobór mocy w trybie pracy5.9 W6.8 W
Pobór mocy w trybie czuwania0.63 W0.7 W
Odporność na wstrząsy w trakcie pracy30 G
Poziom hałasu podczas odczytu33 dB
Poziom hałasu w trybie czuwania28 dB
Średni czas bezawaryjnej pracy300 tys. razy300 tys. razy
Dane ogólne
Wymiary102x147x20 mm
Waga400 g
Data dodania do E-Katalogwrzesień 2016grudzień 2012

Rodzaj dysku

Typ, do którego należy dysk. W szerokim sensie do dysków twardych zalicza się kilka typów dysków:

- HDD. Dyski twarde w klasycznym znaczeniu tego słowa to dyski, które zapisują informacje na obracających się płytach magnetycznych. Pomimo pojawienia się bardziej zaawansowanych typów dysków, klasyczne dyski twarde nadal nie tracą popularności ze względu na połączenie imponujących pojemności i niskich kosztów. Ich główne wady to znaczna waga i pobór mocy, a także stosunkowo niska prędkość odczytu i zapisu danych.

- SSHD. Dyski hybrydowe, które łączą w jednej obudowie opisany powyżej dysk HDD i dysk półprzewodnikowy SSD; system traktuje dysk SSHD jako jedno urządzenie. Ideą takiego połączenia jest zwiększenie prędkości odczytu i zapisu, przy zachowaniu głównej zalety dysku twardego – dużych pojemności przy niskim koszcie. W tym celu część półprzewodnikowa dysku SSHD działa jak szybki schowek między systemem a dyskiem twardym; pod względem wydajności takie systemy, choć nie osiągają poziomu pełnoprawnych dysków SSD, są zauważalnie lepsze od tradycyjnych dysków twardych.

- Macierz RAID. Macierze RAID wykonane jako oddzielne urządzenia (zwykle zewnętrzne, patrz „Wykonywanie”). Takie urządzenie składa się z kilku dysków twardych zainstalowanych w jednej obudowie i połączonych w macierz, która jest postrzegana przez system jako pojedynczy dysk. Istnieje kilka typów (poziomów) macierzy...RAID, które różnią się sposobem interakcji dysków w macierzy i odpowiednio specyfiką ich zastosowania. Tak więc w RAID 0 informacje są zapisywane naprzemiennie na każdym dysku, co zwiększa prędkość działania; w RAID 1 każdy dysk jest kopią wszystkich pozostałych, co daje maksymalną odporność na awarie itp. Szczegółowe dane dotyczące poziomów RAID można znaleźć w dedykowanych źródłach. W tym miejscu zwracamy uwagę, że zakup macierzy RAID może być wygodniejszy niż składanie jej z oddzielnie zakupionych dysków: gotowa macierz jest początkowo wyposażona we wszystko, co jest potrzebne i wymaga jedynie minimalnej konfiguracji. Najważniejsze jest, aby przed zakupem wyjaśnić, które poziomy RAID obsługuje wybrany model.

Gwarancja producenta

Gwarancja producenta na ten model.

W rzeczywistości jest to minimalna żywotność obiecana przez producenta, z zastrzeżeniem zasad działania. Najczęściej rzeczywista żywotność urządzenia jest znacznie dłuższa niż gwarantowana.

Pojemność bufora

Wielkość własnej pamięci RAM dysku twardego. Ta pamięć jest pośrednim ogniwem między szybką pamięcią o dostępie swobodnym komputera a stosunkowo powolną mechaniką odpowiedzialną za odczytywanie i zapisywanie informacji na talerzach dysków. W szczególności bufor służy do przechowywania najczęściej żądanych danych z dysku, skracając w ten sposób czas dostępu do nich.
Technicznie rzecz biorąc, rozmiar bufora wpływa na prędkość dysku twardego - im większy bufor, tym szybszy jest dysk. Jednak wpływ ten jest raczej znikomy, a na poziomie ludzkiej percepcji znaczna różnica w wydajności jest zauważalna tylko wtedy, gdy wielkość bufora obu dysków różni się wielokrotnie – na przykład 8 MB i 64 MB.

Pojemność pamięci podręcznej NAND

Pojemność pamięci półprzewodnikowej NAND zainstalowanej na dysku SSHD (patrz „Rodzaj dysku”).

Taka pamięć działa jak szybki bufor między systemem a rzeczywistym dyskiem twardym. Z reguły przechowywane są w nim najczęściej używane dane, co przyspiesza późniejszy do nich dostęp; a kiedy dane są zapisywane na dysku, dane te są najpierw przechowywane w buforze, a dopiero potem przesyłane na talerze dysku. Większość wspołczesnych dysków SSHD zawiera 8 GB pamięci półprzewodnikowej, co jest uważane za najbardziej rozsądny kompromis między prędkością a całkowitym kosztem urządzenia.

Liczba talerzy

Liczba talerzy przewidzianych w konstrukcji dysku twardego.

Fizycznie dysk twardy składa się z jednego lub więcej talerzy, na których zapisywane są informacje. Może się zapewniać kilka talerzy w celu uzyskania pożądanej pojemności bez zwiększania współczynnika kształtu. Jednocześnie w takim napędzie musi być również zainstalowana odpowiednia liczba głowic odczytujących, co komplikuje konstrukcję, zmniejsza jego niezawodność i zwiększa jej koszt. Dlatego producenci dobierają liczbę talerzy opierając się na rozsądnym kompromisie między tymi punktami, a przy wyborze parametr ten jest bardziej referencyjnym niż praktycznym.

Pobór mocy w trybie pracy

Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.

Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.

Pobór mocy w trybie czuwania

Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.

Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).

Odporność na wstrząsy w trakcie pracy

Parametr określający odporność dysku twardego na upadki i wstrząsy w trakcie pracy (czyli w stanie włączonym). Odporność na wstrząsy mierzona jest w G - jednostkach przeciążenia, 1 G odpowiada normalnej grawitacji. Im wyższa liczba G, tym dysk jest bardziej odporny na różnego rodzaju wstrząsy i tym mniej prawdopodobne jest, że ulegnie uszkodzeniu np. w przypadku upadku. Parametr ten jest szczególnie ważny w przypadku dysków zewnętrznych i dysków używanych w laptopach.

Poziom hałasu podczas odczytu

Poziom hałasu wydawanego przez dysk podczas odczytywania i/lub zapisywania informacji. Źródłem dźwięku w tym przypadku są ruchome talerze dysku, a także mechanika sterująca głowicami czytającymi. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny hałas wydawany przez współczesne dyski twarde podczas pracy wynosi około 50 dB - jest to porównywalne z tłem dźwiękowym w przeciętnym biurze.
Dynamika cen
Seagate FireCuda często porównują
WD Caviar Blue często porównują