Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie ARCTIC P12 Max Black vs ARCTIC P12 Slim PWM PST

Dodaj do porównania
ARCTIC P12 Max Black
ARCTIC P12 Slim PWM PST
ARCTIC P12 Max BlackARCTIC P12 Slim PWM PST
Porównaj ceny 8Porównaj ceny 11
Opinie
0
11
0
0
0
0
1
TOP sprzedawcy
Podstawowe
Przeznaczeniew obudowęw obudowę
Rodzajwentylatorwentylator
Wentylator
Liczba wentylatorów1 szt.1 szt.
Średnica wentylatora120 mm120 mm
Grubość wentylatora25 mm15 mm
Rodzaj łożyskahydrodynamiczne (Fluid Dynamic Bearing)hydrodynamiczne
Min. prędkość obrotowa200 obr./min300 obr./min
Maks. prędkość obrotowa3300 obr./min2100 obr./min
Regulacja obrotówautomatyczna (PWM)automatyczna (PWM)
Maks. przepływ powietrza81.04 CFM42.1 CFM
Ciśnienie statyczne4.35 mm H2O1.45 mm H2O
Cybenetics AirflowPlatinum
Cybenetics Static PressureTitaniumBronze
Napięcie startowe3.9 В4 В
Typ podłączenia4-pin4-pin
Dane ogólne
Rodzaj mocowaniaśrubyśruby
Gwarancja producenta6 lat
Wymiary120x120x25 mm120x120x15 mm
Waga184 g85 g
Data dodania do E-Katalogkwiecień 2023kwiecień 2021
Glosariusz

Grubość wentylatora

Ten parametr należy rozpatrywać w kontekście tego, czy wentylator zmieści się do obudowy komputera. Standardowe wentylatory do obudów są dostępne w grubości rzędu 25 mm. Chłodnice niskoprofilowe o grubości około 15 mm przeznaczone są do obudów o niewielkich gabarytach, gdzie niezwykle ważna jest oszczędność miejsca. Wentylatory o dużej grubości (30-40 mm) charakteryzują się wysoką wydajnością chłodzenia dzięki zwiększonym wymiarom wirnika. Są jednak głośniejsze od standardowych modeli przy tej samej prędkości i nie zawsze mieszczą się normalnie w obudowie, czasem stykając się z innymi elementami.

Rodzaj łożyska

Rodzaj łożyska zastosowanego w wentylatorach (wentylatorze) układu chłodzenia.

Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:

- Ślizgowe. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie części są proste, niezawodne i trwałe, lecz ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania (patrz niżej) zapewniają znacznie mniejsze tarcie.

- Toczne. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności jest nieco gorsza zarówno od łożysk ślizgowych, jak i bardziej zaawansowanych urządzeń hydrodynamicznych (patrz poniżej). Choć łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wyżej wymienione odmiany.

- Hydrodynamiczny .... Łożyska tego typu wypełnione są specjalnym płynem; obracając się tworzy on warstwę, po której ślizga się ruchoma część łożyska. W ten sposób można uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znacznie zmniejszyć tarcie w porównaniu z poprzednimi odmianami. Ponadto łożyska te są ciche i bardzo niezawodne. Wśród ich wad można zaznaczyć stosunkowo wysoki koszt, jednak w praktyce punkt ten często okazuje się niewidoczny na tle kosztu całego układu. Dlatego ten wariant jest w naszych czasach niezwykle popularny, występuje on w układach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.

- Centrowanie magnetyczne . Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane są za najbardziej zaawansowany rodzaj łożysk, są niezawodne i ciche, lecz są drogie.

Min. prędkość obrotowa

Najniższa prędkość, przy której może działać wentylator chłodzący. Jest wskazywana tylko dla modeli z regulatorem prędkości (patrz poniżej).

Im niższa prędkość minimalna (przy tym samym maksimum) - tym szerszy jest zakres regulacji prędkości i tym bardziej możesz spowolnić wentylator, gdy duża wydajność nie jest potrzebna (takie spowolnienie pozwala zmniejszyć zużycie energii i poziom hałasu). Z drugiej strony szeroki zakres ma odpowiedni wpływ na koszt.

Maks. prędkość obrotowa

Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość nie przekracza 1000 obr./min, w „najszybszych” może to być do 2500 obr./min, a nawet więcej.

Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.

Maks. przepływ powietrza

Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.

Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet więcej.

Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.

Ciśnienie statyczne

Maksymalne statyczne ciśnienie powietrza generowane przez wentylator podczas pracy.

Parametr ten mierzony jest w następujący sposób: jeżeli wentylator jest zainstalowany na rurze zaślepionej, z której nie ma wylotu powietrza, i ustawiony do nadmuchu, to ciśnienie osiągane w rurze będzie odpowiadało ciśnieniu statycznemu. W praktyce parametr ten określa całkowitą sprawność wentylatora: im wyższe ciśnienie statyczne (pozostałe parametry są takie same), tym łatwiej wentylatorowi „przepychać” wymaganą ilość powietrza przez przestrzeń o dużym oporze, np. przez wąskie szczeliny radiatora lub przez obudowę wypełnioną podzespołami.

Parametr ten również jest używany w niektórych specyficznych obliczeniach, jednak obliczenia te są dość skomplikowane i zwykły użytkownik z reguły nie jest potrzebny - są one związane z kwestiami, które są istotne głównie dla entuzjastów komputerowych. Więcej na ten temat można przeczytać w specjalnych źródłach.

Cybenetics Airflow

Test Cybenetics Airflow ocenia wydajność wentylatora w przekazywaniu powietrza (zob. punkt Maks. przepływ powietrza). Ten test mierzy przepływ powietrza (lub wydajność powietrzną), który wentylator jest w stanie zapewnić, gdy działa przy określonej prędkości, oraz jak dobrze potrafi przemieszczać powietrze przez system. Wyniki testu pozwalają sklasyfikować wentylatory według poziomów Bronze (34 – 38 CFM), Silver (38 – 42 CFM), Gold (42 – 46 CFM), Platinum (46 – 50 CFM), Titanium (50 – 55 CFM) i Diamond (55+ CFM), w zależności od ich zdolności do zapewnienia przepływu powietrza przy niskim poziomie hałasu.

W dokumentacji technicznej producenci często podają dane uzyskane w warunkach laboratoryjnych z optymalnymi parametrami, na przykład przy idealnych temperaturach i maksymalnych obrotach wentylatora. Testy, takie jak Cybenetics Airflow, są przeprowadzane w surowszych i bardziej realistycznych warunkach, na przykład z ograniczeniem hałasu lub w warunkach imitujących rzeczywiste warunki eksploatacji, co może prowadzić do różnic w wynikach.

Napięcie startowe

Napięcie startowe wentylatora zainstalowanego w układzie chłodzenia. W rzeczywistości jest to najmniejsza wartość wymagana do stabilnej pracy wentylatora - jeśli napięcie będzie za niskie, po prostu się nie uruchomi. Zwróć uwagę, że parametr ten dotyczy głównie dość specyficznych zadań - na przykład instalacji wentylatora w zasilaczu, podłączenia go bezpośrednio do zasilacza lub wyboru zewnętrznego kontrolera do regulacji prędkości obrotowej. Podczas podłączania przez standardowe złącza zasilania napięcie rozruchowe można zignorować.

Gwarancja producenta

Gwarancja producenta, udzielana na dany model.

W rzeczywistości jest to minimalny okres użytkowania obiecany przez producenta, pod warunkiem przestrzegania zasad eksploatacji. Najczęściej rzeczywista żywotność urządzenia okazuje się znacznie dłuższa niż gwarantowana. Wśród skromnych wskaźników spotyka się modele z 1-letnią gwarancją lub 2-letnią, bardziej zaawansowane modele objęte są 3-letnią gwarancją, a najbardziej pewni siebie producenci udzielają 5-letniej, a nawet 6-letniej gwarancji.
Dynamika cen
ARCTIC P12 Max Black często porównują
ARCTIC P12 Slim PWM PST często porównują