Rodzaj pamięci
Rodzaj pamięci graficznej używanej przez kartę graficzną (zobacz Pamięć GPU). Obecnie używane są następujące rodzaje pamięci:
-
DDR3. Pamięć RAM ogólnego przeznaczenia, która nie jest wyspecjalizowana do przetwarzania grafiki i została pierwotnie stworzona do użytku we wspólnej systemowej pamięci RAM. Jednak ze względu na dobrą wydajność i stosunkowo niski koszt, został ostatnio użyta w kartach graficznych (choć głównie na poziomie budżetowym).
— DDR4. Dalszy, po DDR3, rozwój pamięci RAM ogólnego przeznaczenia. W szczególności w przypadku kart graficznych jest to niezwykle rzadkie ze względu na rozpowszechnienie bardziej zaawansowanych, specjalistycznych standardów.
- GDDR2. Pamięć drugiej generacji, zbudowana w oparciu o technologię Double Data-Rate („podwojona szybkość transferu danych”). W rzeczywistości jest to modyfikacja pamięci RAM typu DDR2, zoptymalizowana do użytku w kartach graficznych; tak jak oryginalna DDR2, zapewnia 4 operacje transferu danych na jeden cykl zegara (oryginalne operacje DDR - 2). Nie była szeroko stosowana ze względu na tendencję do silnego nagrzewania się podczas pracy.
-
GDDR3. Ulepszona wersja GDDR2 (patrz wyżej). Charakteryzuje się wyższą efektywną częstotliwością (co za tym idzie - wydajnością), wyróżniając się jednocześnie niższą emisją ciepła. Niegdyś cieszyła się sporą popularnością, obecnie stopniowo wychodzi z użytku, ustępuj
...ąc miejsca bardziej zaawansowanym standardom.
- GDDR5. Całkiem zaawansowany format pamięci graficznej; w przeciwieństwie do wcześniejszych wersji GDDR (patrz wyżej) jest oparta na pamięci RAM DDR3.
- GDDR5X. Dalsze ulepszenia pamięci GDDR5, mające na celu zwiększenie przepustowości (a tym samym ogólnej szybkości i wydajności grafiki). Różne ulepszenia konstrukcyjne umożliwiły osiągnięcie 2-krotnego wzrostu maksymalnej prędkości - do 12 Gb/s w porównaniu do 6 Gb/s w przypadku oryginalnej pamięci GDDR5. Jednocześnie, chociaż GDDR5X ma gorszą charakterystykę od HBM (patrz poniżej), jest znacznie tańsza.
- GDDR6. Dalszy, po GDDR5X, rozwój pamięci graficznej, takiej jak GDDR. Umożliwia przesyłanie danych z szybkością do 16 Gb/s na pin, czyli prawie dwa razy więcej niż GDDR5, przy niższym napięciu roboczym. Takie cechy pozwalają wykorzystać GDDR6 do pracy z rozdzielczościami 4K i wyższymi, a także systemami wirtualnej rzeczywistości; karty graficzne z taką pamięcią to głównie rozwiązania z najwyższej półki.
- GDDR6X. Ulepszona wersja GDDR6 wydana jesienią 2020 roku. Według twórców jest to najszybsza pamięć graficzna w momencie premiery. Jedną z kluczowych aktualizacji jest zastosowanie tak zwanej modulacji wielowarstwowej PAM4, która umożliwia przesyłanie 2 bitów danych na cykl (w przeciwieństwie do 1 bitu w poprzednikach). Dzięki temu przepustowość GDDR6X może osiągnąć 21 Gb/s dla 1 pinu i 1 TB/s dla całego bloku pamięci (w porównaniu z odpowiednio 16 Gb / si 700 GB/s w poprzedniej wersji). Ten rodzaj pamięci jest świetny nawet dla najpotężniejszych nowoczesnych kart graficznych, jednak odpowiednio też kosztuje.
- HBM. Rodzaj pamięci zaprojektowany w oparciu o maksymalne zwiększenie przepustowości. Różni się zasadniczo od różnych wersji GDDR tym, że moduł HBM jest zbudowany na zasadzie „kanapki” - układy pamięci są ułożone warstwowo i umożliwiają jednoczesny dostęp; a do komunikacji z procesorem stosowana jest specjalna warstwa krzemu tzw. „interposer”, który zapewnia wydajną transmisję dużych ilości danych. Dzięki temu HBM znacznie (kilkakrotnie) przewyższa nawet najbardziej zaawansowane wersje GDDR pod względem szybkości, a częstotliwość taktowania takich modułów pamięci jest niska, co daje kolejną zaletę - wyjątkowo niskie zużycie energii i wydzielanie ciepła. Główną wadą tej technologii jest jej wysoki koszt.
- HBM2. Druga generacja szybkich pamięci typu HBM, wprowadzona w 2016 roku. Więcej informacji na temat ogólnych funkcji HBM znajduje się powyżej, a w przypadku HBM2 przepustowość została podwojona w porównaniu z pierwszą wersją tej technologii. To sprawia, że ta pamięć jest idealna do zadań wymagających dużej ilości zasobów, takich jak praca z wirtualną rzeczywistością.Częstotliwość GPU
Częstotliwość pracy procesora graficznego karty graficznej. Z reguły im wyższa częstotliwość GPU, tym wyższa wydajność karty graficznej, ale parametr ten nie jest jedyny - wiele zależy również od cech konstrukcyjnych karty graficznej, w szczególności od rodzaju i ilości pamięci graficznej (patrz odpowiednie punkty słownika). W konsekwencji nierzadko zdarza się, że spośród dwóch kart graficznych model o niższej częstotliwości CPU może być bardziej wydajny. Ponadto warto zauważyć, że procesory o wysokiej częstotliwości mają również wysokie wydzielanie ciepła, co wymaga zastosowania wydajnych systemów chłodzenia.
Częstotliwość pracy pamięci
Szybkość, z jaką karta graficzna może przetwarzać dane przechowywane w jej pamięci VRAM. W rzeczywistości wartość ta określa maksymalną liczbę operacji odbierania lub przesyłania danych przez moduł pamięci w jednostce czasu. Częstotliwość ta wyrażana jest w megahercach (MHz) – milionach operacji na sekundę. Wysoka częstotliwość pamięci VRAM pomaga poprawić wydajność przy wykonywaniu zadań wymagających dużych zasobów, takich jak przetwarzanie tekstur, renderowanie grafiki i inne operacje graficzne. Jednak parametr nie jest jedynym czynnikiem wpływającym na ogólną wydajność karty graficznej — ważne jest, aby wziąć pod uwagę architekturę GPU, liczbę rdzeni, częstotliwość rdzeni i inne parametry.
Test Passmark G3D Mark
Wynik pokazany przez kartę graficzną w teście porównawczym Passmark G3D Mark.
Testy porównawcze pozwalają ocenić rzeczywiste możliwości (przede wszystkim ogólną wydajność) karty graficznej. Jest to szczególnie wygodne w świetle faktu, że karty graficzne o podobnych charakterystykach w praktyce mogą znacznie różnić się możliwościami (na przykład ze względu na różnicę w jakości optymalizacji poszczególnych elementów do wykonywania połączeń). A Passmark G3D Mark jest obecnie najpopularniejszym testem porównawczym kart graficznych. Wyniki tego testu są przedstawiane w punktach, przy czym większa liczba punktów odpowiada wyższej wydajności. Od połowy 2020 roku liczba punktów zdobytych w najbardziej zaawansowanych kartach graficznych może przekroczyć 17 000.
Należy pamiętać, że Passmark G3D Mark służy nie tylko do ogólnej oceny wydajności, ale także do określania zgodności karty graficznej z określonym procesorem. Procesor i karta graficzna muszą być w przybliżeniu równe pod względem ogólnego poziomu mocy obliczeniowej, w przeciwnym razie jeden komponent "cofnie się" do drugiego: na przykład słaby procesor nie pozwoli na pełne wykorzystanie potencjału potężnej karty graficznej do gier. Aby wyszukać kartę wideo dla określonego modelu procesora, możesz skorzystać z listy „Optymalne dla procesorów AMD” lub „Optymalne dla procesorów Intel” w naszym katalogu.
Liczba wentylatorów
Liczba pojedynczych wentylatorów przewidzianych w układzie chłodzenia karty graficznej (jeśli występują - patrz „Chłodzenie”).
Ogólnie rzecz biorąc, im mocniejsza karta graficzna, tym bardziej wydajne chłodzenie jest wymagane. Tak więc
jeden wentylator jest typowy głównie dla podstawowych i niedrogich urządzeń
klasy średniej, dwa - od średnio zaawansowanej do zaawansowanej, a
trzy lub
więcej to niemal jednoznaczne oznaki rozwiązania premium. Jednocześnie nie ma tutaj ścisłej zależności, a modele o podobnej charakterystyce mogą mieć różną liczbę wentylatorów (zwłaszcza, że o wydajności chłodzenia decyduje nie tylko liczba wentylatorów, ale także ich średnica). Ale parametr ten wpływa jednoznacznie na długość karty graficznej i odpowiednio ilość miejsca wymaganą do jej zainstalowania.
Pobór mocy
Maksymalny pobór mocy praz kartę graficzną podczas pracy. Parametr ten jest ważny przy obliczaniu całkowitej mocy zużywanej przez cały system i wyborze zasilacza, który zapewnia odpowiednią moc.
Liczba zajmowanych slotów
Liczba gniazd zajmowanych przez kartę graficzną na tylnej ścianie jednostki systemowej.
Wskaźnik ten umożliwia oszacowanie ilość miejsca potrzebnego do zainstalowania karty graficznej. Jest to istotne w świetle faktu, że współczesne karty graficzne mogą mieć dość obszerny zestaw złączy, a dla tego zestawu już dawno nie wystarcza standardowego slota z 1 gniazdem. Jest to szczególnie ważne w przypadku modeli o dużej mocy. W związku z tym wiele rozwiązań, zwłaszcza ze średniej i wyższej półki, zajmuje
dwa, a nawet
trzy sloty naraz.
Osobno warto omówić modele, dla których w charakterystyce jest podana ułamkowa liczba gniazd - zwykle 2,5 lub 2,7. Ten szczegół jest podawany przez producenta w celach reklamowych - jako potwierdzenie, że karta graficzna jest mniejsza niż pełnowartościowe rozwiązanie z 3 gniazdami. Jednak w praktyce nie ma różnicy między tymi wariantami: karty graficzne dla gniazd 2,5 lub 2,7 nadal nakładają się na trzecie gniazdo (choć częściowo), co czyni go bezużytecznym.
Długość karty graficznej
Całkowita długość karty graficznej.
Długość w tym przypadku oznacza wielkość urządzenia od płytki ze złączami (która jest przymocowana do tylnej ściany jednostki systemowej) na przeciwną stronę. Sama płyta i wystające na zewnątrz łączniki zwykle nie są brane pod uwagę.
Dane dotyczące długości karty graficznej są potrzebne przede wszystkim po to, aby ocenić, czy w konkretnym przypadku jest na nią wystarczająco dużo miejsca. Ponadto dłuższe płyty z reguły mają bardziej zaawansowane cechy (chociaż nie ma tu ścisłej zależności, a karty graficzne podobnej klasy mogą mieć różne długości). Jeśli chodzi o konkretne wartości, najbardziej kompaktowe rozwiązania obecnie mają rozmiar
150 - 200 mm lub
mniej ; wskaźnik
200-250 mm nadal można uznać za stosunkowo mały,
250-290 mm - średni, a wiele modeli (głównie na poziomie zaawansowanym) ma długość
ponad 290 mm.