Sprawność
Sprawność w tym przypadku to stosunek mocy zasilacza (patrz „Moc”) do jego zużycia energii. Im wyższa sprawność, tym wydajniejszy zasilacz, tym mniej energii pobiera z sieci przy tej samej mocy wyjściowej i tym tańsza jest jego eksploatacja. Sprawność może się różnić w zależności od obciążenia; specyfikacja może wskazywać zarówno minimalną sprawność, jak i jej wartość przy średnim obciążeniu (50%).
Należy zauważyć, że od tego wskaźnika bezpośrednio zależy zgodność z takim lub innym poziomem wydajności 80PLUS (więcej szczegółów w „Certyfikat”).
Chłodzenie
-
1 wentylator. Najpopularniejszy wariant. Moc takiego układu jest wystarczająca do chłodzenia zasilaczy o mocy m.in. powyżej średniej i jest on stosunkowo niedrogi. Natomiast zauważalny jest hałas wentylatora, szczególnie w niedrogich zasilaczach o małej średnicy wentylatora (patrz „Średnica wentylatora”).
-
2 wentylatory. Drugi wentylator jest zwykle instalowany w mocnych zasilaczach, dla których moc jednego wentylatora nie wystarcza. Ceną, jaką trzeba zapłacić za tę wydajność, oprócz zwiększonych kosztów, jest zwiększony poziom hałasu.
-
Półpasywny. Funkcja pozwalająca na automatyczne wyłączenie układu chłodzenia zasilacza w sytuacjach, gdy obciążenie zasilacza jest niskie, a wydzielenie ciepła ograniczone. Występuje tylko w modelach z aktywnym układem chłodzenia. Przypomnijmy, że układy tego typu są wydajniejsze od pasywnych, ale zużywają dodatkową energię i generują hałas podczas pracy. W związku z tym przy niewielkim obciążeniu, gdy intensywne chłodzenie nie jest wymagane, rozsądniej jest wyłączyć wentylatory - oszczędza to energię i zmniejsza poziom hałasu.
-
Pasywny (radiatory). W porównaniu z wentylatorami, radiatory mają szereg zalet: na przykład nie generują żadnego hałasu i nie wymagają własnego zasilania (co zmniejsza całkowite zużycie energii). Są jednak w efekcie znacznie mniej wydajne – moc zasila
...czy z pasywnym chłodzeniem nie przekracza 600 W. Ponadto takie zasilacze są dość drogie.Średnica wentylatora
Średnica wentylatora (wentylatorów) w układzie chłodzenia zasilacza.
Duża średnica pozwala na dobrą wydajność przy stosunkowo niskich obrotach, co z kolei zmniejsza hałas i zużycie energii. Duże wentylatory są jednak droższe od małych i zajmują dużo miejsca, co wpływa na ogólną wielkość zasilacza. Podkreślamy też, że mały wentylator nie jest jeszcze oznaką taniego zasilacza – taki sprzęt można spotkać również w dość zaawansowanych modelach przez wzgląd na zmniejszenie wymiarów.
Jeśli chodzi o konkretne średnice, najmniejszą wartością, jaką można znaleźć we współczesnych zasilaczach konsumenckich, jest
80 mm. Najpopularniejsza opcja to
120 mm, ten rozmiar daje dobrą wydajność i stosunkowo niski poziom hałasu przy rozsądnej cenie i wymiarach. Nieco rzadziej spotykane są większe średnice –
135 mm i
140 mm.
Rodzaj łożyska
Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:
- Slajdy. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie urządzenia są proste, niezawodne i trwałe, ale ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania, zapewniają znacznie mniejsze tarcie.
- Toczenie. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności nieco ustępuje zarówno tym samym łożyskom ślizgowym, jak i bardziej zaawansowanym urządzeniom hydrodynamicznym. Dlatego chociaż łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wymienione typy.
- Hydrodynamiczny. Łożyska tego typu wypełnione są specjalnym płynem; podczas obracania tworzy warstwę, po której ślizga się ruchoma część łożyska. Pozwala to uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znaczni...e zmniejsza tarcie w porównaniu z poprzednimi typami. Ponadto łożyska te są ciche i bardzo niezawodne. Do ich wad należy stosunkowo wysoki koszt, ale w praktyce ten szczegół jest często niewidoczny na tle ceny całego systemu. Dlatego ta opcja jest obecnie niezwykle popularna, można ją znaleźć w systemach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.
- Centrowanie magnetyczne. Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane za najbardziej zaawansowany typ łożysk, są niezawodne i ciche, ale są drogie.
Certyfikat
Posiadanie przez zasilacz certyfikatu 80+ lub jego brak. Ten certyfikat wskazuje na wysoką wydajność energetyczną: aby go uzyskać, sprawność (patrz wyżej) musi wynosić co najmniej 80%, przy czym w różnych trybach (20%, 50% i 100% maksymalnego załadunku). Istnieje kilka stopni 80+:
-
80+. Oryginalna wersja certyfikatu zakładająca sprawność co najmniej 82% (co najmniej 85% przy 50% obciążeniu).
-
80+ White. Druga nazwa oryginalnego certyfikatu 80+ (patrz wyżej).
-
80+ Bronze - sprawność nie mniejsza niż 85% (dla połowy załadunku - 88%).
-
80+ Silver - odpowiednio 87% (90% dla połowy załadunku).
-
80+ Gold - 89% (92% dla połowy załadunku).
-
80+ Platinium - 90% (94% dla połowy załadunku).
-
80+ Titanium - 94% (96% dla połowy załadunku).
Współczynnik mocy (patrz „Rodzaj układu PFC”) musi wynosić co najmniej 0,9 dla niższych poziomów i co najmniej 0,95 dla poziomu Platinum. Należy również zauważyć, że w przypadku nadmiarowego zasilania używanego w systemach serwerowych wymagania dotyczące sprawności są nieco niższe.
Standard ATX 12V v.
Standard dla zasilaczy uzupełniający specyfikacje ATX w zakresie zasilania 12 V. Wprowadzony od czasów procesora Intel Pentium 4. Pierwsza seria standardu wykorzystywała głównie linię +5 V, od wersji 2.0 została wprowadzona linia +12 V w celu pełnego zasilania podzespołów komputera. Również w drugiej generacji pojawiło się 24-pinowe złącze zasilania, które jest używane w większości współczesnych płyt głównych.
MOLEX
Liczba złączy Molex (IDE) przewidziana w konstrukcji zasilacza.
Początkowo złącze to było przeznaczone do zasilania urządzeń peryferyjnych interfejsu IDE, przede wszystkim dysków twardych. I chociaż samo IDE jest dziś całkowicie przestarzałe i nie jest używane w nowych komponentach, złącze zasilania Molex nadal jest instalowane w zasilaczach i prawie bezbłędnie. Prawie każdy współczesny zasilacz ma co najmniej
1-2 takie złącza, a w modelach z wyższej półki liczba ta może wynosić
7 lub więcej. Ta sytuacja wynika z faktu, że Molex IDE jest dość uniwersalnym standardem, a za pomocą najprostszych adapterów można zasilać komponenty z innym interfejsem zasilania. Na przykład są adaptery Molex - SATA do napędów, Molex - 6 pin do kart graficznych itp.
Floppy
Dostępność co najmniej jednego złącza zasilania Floppy.
Początkowo złącze to miało służyć do zasilania stacji dyskietek, stąd nazwa. Znane jest również pod nazwą „mini-Molex”. W każdym razie ten standard jest ogólnie uważany za przestarzały, ale nadal jest używany przez niektóre określone typy komponentów, a zatem nadal jest stosowany w zasilaczach.
Okablowanie
Okablowanie zastosowane w zasilaczu.Według tego parametru rozróżnia się urządzenia
modularne,
częściowo modularne i niemodularne, oto ich cechy:
- Niemodularne. Klasyczna wersja konstrukcji, która od samego początku stosowana była w zasilaczach komputerowych i do dziś nie traci na popularności. Przewody w takim okablowaniu mają nieusuwalną konstrukcję, a podłączenie dodatkowych kabli nie jest przewidziane. W efekcie użytkownik ma do czynienia tylko z kablami dostarczonymi przez producenta, bez możliwości ich usunięcia lub wymiany (jedyne dostępne modyfikacje to montaż dodatkowych akcesoriów, takich jak przedłużacz czy rozgałęźnik). Z tego powodu takie zasilacze są mniej wygodne niż modularne i częściowo modularne: ich przewody są często nadmiernie długie, a część z nich w ogóle nie jest używana, a taka „ekonomia” dodatkowo zaśmieca obudowę, utrudniając cyrkulację powietrza i wydajność chłodzenia. Wady te jednak można zredukować prawie do zera dzięki starannemu doborowi zasilaczy i starannemu okablowaniu; i same w sobie systemy niemodularne są niezawodne i jednocześnie tanie. To właśnie dzięki tym cechom są one w naszych czasach najczęściej spotykane.
- Modularne. Systemy, w których każdy kabel jest odpinany; do mocowania przewodów służą specjalne gniazda. Dzięki tej konstrukcji można optymalnie zorganizować przestrzeń wewnątrz komputera - na przykład usunąć niepotrzebne przewody, aby nie
...zakłócały cyrkulacji powietrza w jednostce systemowej; zamienić zbyt długi kabel na krótszy (lub odwrotnie); zamienić kable itp. Jednocześnie okablowanie modularne jest znacznie droższe niż niemodularne, podczas gdy jest uważane za nieco mniej niezawodne ze względu na obecność „słabych punktów” w postaci wyjmowanych uchwytów kablowych.
- Częściowo modularne. Swego rodzaju kompromis między opisanymi powyżej opcjami: część przewodów w takich zasilaczach jest nieusuwalna, część wyposażona jest w mocowania modularne. Pozwala to częściowo połączyć zalety i zrekompensować wady obu systemów: zasilacze półmodularne są tańsze i bardziej niezawodne niż modularne, a jednocześnie wygodniejsze niż niemodularne. Z reguły w systemach tego typu konstrukcję nieusuwalną mają najważniejsze przewody, które praktycznie na pewno są używane podczas montażu komputera, a kable wtórne są wyposażone w zdejmowane łączniki i można je usunąć w razie potrzeby. Jednak konkretne cechy zasilacza częściowo modularnego należy wyjaśnić osobno.