Polska
Katalog   /   Komputery   /   Podzespoły   /   Zasilacze

Porównanie Deepcool DQ M-V2L DQ750-M-V2L vs Thermaltake Toughpower GF1 GF1 750W

Dodaj do porównania
Deepcool DQ M-V2L DQ750-M-V2L
Thermaltake Toughpower GF1 GF1 750W
Deepcool DQ M-V2L DQ750-M-V2LThermaltake Toughpower GF1 GF1 750W
od 428 zł
Wkrótce w sprzedaży
Porównaj ceny 1
Opinie
TOP sprzedawcy
Wysokiej jakości obwody (japońskie kondensatory, przetworniki DC-DC). Wysoka obciążalność kanału +12V. Certyfikat 80+ Gold. Długie kable i pętle.
Moc750 W750 W
StandardATXATX
Dane techniczne
Typ PFCaktywneaktywne
Sprawność90 %90 %
Chłodzenieaktywna (wentylator)półpasywna (wyłączenie wentylatora)
Średnica wentylatora120 mm140 mm
Rodzaj łożyskaślizgowe
Certyfikat80+ Gold80+ Gold
Standard ATX 12V v.2.31
Złącza zasilania
Zasilanie MB/CPU24+8+8(4+4) pin24+8 (4+4) pin
SATA6 szt.9 szt.
MOLEX4 szt.4 szt.
PCI-E 8pin (6+2)4 szt.4 szt.
Floppy
Okablowaniemodularnemodularne
Długość kabli
MB550 mm
CPU700 mm
SATA550 mm
MOLEX450 mm
PCI-E500 mm
Wydajność prądowa i moc
+3.3V20 А22 А
+5V20 А22 А
+12V162 А62.5 А
-12V0.3 А0.3 А
+5Vsb2.5 А3 А
Moc +12V744 W750 W
Zasilanie +3.3V +5V110 W120 W
Moc -12V3.6 W3.6 W
Moc +5Vsb12.5 W15 W
Dane ogólne
Zabezpieczenie przed zbyt wysokim napięciem wyjściowym (OVP)
Zabezpieczenie przed przeciążeniem (OPP)
Zabezpieczenie przed zwarciem (SCP)
ZabezpieczeniaUVP, OCP, OTPOCP, UVP, OTP
Gwarancja producenta10 lat
Wymiary (WxSxG)86x150x160 mm86x150x160 mm
Data dodania do E-Katalogsierpień 2020lipiec 2019
Glosariusz

Chłodzenie

Aktywne chłodzenie. Używa wentylatora, który stale pracuje, aby odprowadzić ciepło z wewnętrznych komponentów. W przeciwieństwie do chłodzenia pasywnego, aktywna system zapewnia lepszy odbiór ciepła i stabilność pracy przy wysokich obciążeniach, zapobiegając przegrzewaniu. Jednak generuje hałas. Aby temu zaradzić, wentylatory w takich PSU mogą posiadać dynamiczną kontrolę prędkości (AFC – Automatic Fan Control), zmniejszając obroty przy niskim zużyciu energii.

Półpasywne. Aktywne chłodzenie z automatycznym wyłączaniem wentylatora w sytuacjach, gdy obciążenie na zasilacz jest niskie i emisja ciepła się zmniejsza. Przypomnijmy, systemy tego typu są skuteczniejsze niż pasywne, jednak zużywają dodatkową energię i generują hałas podczas pracy. W związku z tym, przy niewielkim obciążeniu, gdy intensywne chłodzenie nie jest wymagane, rozsądnie jest wyłączyć wentylatory — pozwala to zaoszczędzić energię i zmniejszyć poziom hałasu.

Pasywne (radiatory). W porównaniu do wentylatorów, radiatory mają szereg zalet: po pierwsze, nie generują hałasu i nie wymagają własnego zasilania (obniżając tym samym ogólne zużycie energii). Z drugiej strony, są znacznie mniej efektywne, w wyniku czego moc zasilaczy z pasywnym chłodzeniem nie przekracza 600 W. Dodatkowo, takie PSU są dość drogie.

Średnica wentylatora

Średnica wentylatora (wentylatorów) w układzie chłodzenia zasilacza.

Duża średnica pozwala na dobrą wydajność przy stosunkowo niskich obrotach, co z kolei zmniejsza hałas i zużycie energii. Duże wentylatory są jednak droższe od małych i zajmują dużo miejsca, co wpływa na ogólną wielkość zasilacza. Podkreślamy też, że mały wentylator nie jest jeszcze oznaką taniego zasilacza – taki sprzęt można spotkać również w dość zaawansowanych modelach przez wzgląd na zmniejszenie wymiarów.

Jeśli chodzi o konkretne średnice, najmniejszą wartością, jaką można znaleźć we współczesnych zasilaczach konsumenckich, jest 80 mm. Najpopularniejsza opcja to 120 mm, ten rozmiar daje dobrą wydajność i stosunkowo niski poziom hałasu przy rozsądnej cenie i wymiarach. Nieco rzadziej spotykane są większe średnice – 135 mm i 140 mm.

Rodzaj łożyska

Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:

- Slajdy. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie urządzenia są proste, niezawodne i trwałe, ale ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania, zapewniają znacznie mniejsze tarcie.

- Toczenie. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności nieco ustępuje zarówno tym samym łożyskom ślizgowym, jak i bardziej zaawansowanym urządzeniom hydrodynamicznym. Dlatego chociaż łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wymienione typy.

- Hydrodynamiczny. Łożyska tego typu wypełnione są specjalnym płynem; podczas obracania tworzy warstwę, po której ślizga się ruchoma część łożyska. Pozwala to uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znaczni...e zmniejsza tarcie w porównaniu z poprzednimi typami. Ponadto łożyska te są ciche i bardzo niezawodne. Do ich wad należy stosunkowo wysoki koszt, ale w praktyce ten szczegół jest często niewidoczny na tle ceny całego systemu. Dlatego ta opcja jest obecnie niezwykle popularna, można ją znaleźć w systemach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.

- Centrowanie magnetyczne. Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane za najbardziej zaawansowany typ łożysk, są niezawodne i ciche, ale są drogie.

Standard ATX 12V v.

Standard dla zasilaczy uzupełniający specyfikacje ATX w zakresie zasilania 12 V. Wprowadzony od czasów procesora Intel Pentium 4. Pierwsza seria standardu wykorzystywała głównie linię +5 V, od wersji 2.0 została wprowadzona linia +12 V w celu pełnego zasilania podzespołów komputera. Również w drugiej generacji pojawiło się 24-pinowe złącze zasilania, które jest używane w większości współczesnych płyt głównych.

Zasilanie MB/CPU

Liczba i rodzaj złączy dostępnych w zasilaczu do zasilania płyty głównej lub procesora.

Parametr ten jest zapisywany jako suma kilku liczb, na przykład „24+4”. Pierwsza liczba oznacza liczbę pinów w złączu do zasilania płyty głównej; w zdecydowanej większości przypadków jest to właśnie 24, ponieważ współczesne płyty główne standardowo wykorzystują złącze 24-pinowe. Druga liczba opisuje gniazdo do zasilania procesora; większość procesorów klasy podstawowej i średniej używa zasilania 4-pinowego, podczas gdy potężne układy mogą wymagać zasilania 8-pinowego. Może być kilka 4- lub 8-pinowych złączy - licząc na potężne "żarłoczne" procesory.

Osobny przypadek stanowią zasilacze typu „24 (20+4)”. Posiadają one dwie oddzielne wtyczki - 20 pin i 4 pin, co umożliwia zasilanie z takich zasilaczy tak płyt głównych 24-pinowych, jak i starszych płyt głównych 20-pinowych. Jednocześnie w takich modelach nie ma oddzielnego zasilacza dla procesora - jest on zasilany tylko przez gniazdo, a 4-pinowej wtyczki nie można podłączyć do żadnych innych elementów, z wyjątkiem płyty głównej.

Obecnie na rynku dostępne są zasilacze z następującym zasilaniem płyty głównej: 24 pin (20+4), 24+4 pin, 24+8 (4+4) pin, 24+8+8 (4+4) pin.

SATA

Liczba złączy zasilania SATA zapewnionych w zasilaczu.

Obecnie SATA jest standardowym interfejsem do podłączania wewnętrznych dysków twardych, można go również znaleźć w innych typach dysków (SSD, SSHD itp.). Ten interfejs składa się ze złącza danych, które łączy się z płytą główną, i złącza zasilania, które łączy się z zasilaczem. W związku z tym w tym punkcie chodzi o liczbę wtyczek zasilania SATA zapewnionych w zasilaczu. Liczba ta odpowiada liczbie dysków SATA, które mogą być jednocześnie zasilane z tego modelu.

Floppy

Dostępność co najmniej jednego złącza zasilania Floppy.

Początkowo złącze to miało służyć do zasilania stacji dyskietek, stąd nazwa. Znane jest również pod nazwą „mini-Molex”. W każdym razie ten standard jest ogólnie uważany za przestarzały, ale nadal jest używany przez niektóre określone typy komponentów, a zatem nadal jest stosowany w zasilaczach.

+3.3V

Maksymalne wartości prądu i mocy, jakie zasilacz może dostarczyć na osobnych liniach zasilających.

Linia zasilająca może być po prostu opisana jako para styków do podłączenia określonego obciążenia; jeden z tych styków jest „masą” (o napięciu zerowym), a drugi ma pewne napięcie ze znakiem dodatnim lub ujemnym, a napięcie to odpowiada napięciu linii zasilającej. W tym momencie wynosi +3.3V (takie zasilanie występuje w złączach 20- i 24-pinowych do płyt głównych, w złączach zasilania SATA i niektórych innych typach złączy).

Ogólnie rzecz biorąc, moc i prądy to dość specyficzne parametry, których zwykły użytkownik rzadko potrzebuje - głównie przy podłączaniu komponentów o dużym poborze mocy, takich jak karty graficzne, a także przy uruchamianiu zasilacza bez komputera, do zasilania innej elektroniki (np. amatorskich stacji radiowych). Warto również wspomnieć, że suma mocy maksymalnych na wszystkich liniach może być wyższa niż całkowita moc wyjściowa zasilacza - oznacza to, że wszystkie linie nie mogą pracować jednocześnie z pełną mocą. W związku z tym, gdy zasilacz jest w pełni obciążony, niektóre z nich będą dostarczać mniej energii niż to możliwe.

+5V

Maksymalny prąd, jaki zasilacz jest w stanie dostarczyć do linii zasilającej +5V. Aby uzyskać więcej ogólnych informacji na temat linii zasilających, zobacz „+3.3 V”. W tym miejscu zauważamy, że zasilanie +5V, oprócz złączy do płyt głównych (na 20 i 24 piny), znajduje się również we wtyczkach Molex i SATA, a także w niektórych innych specyficznych typach złączy.
Dynamika cen
Deepcool DQ M-V2L często porównują