Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie Gigabyte B650M D3HP vs Gigabyte B650M DS3H

Dodaj do porównania
Gigabyte B650M D3HP
Gigabyte B650M DS3H
Gigabyte B650M D3HPGigabyte B650M DS3H
Porównaj ceny 9Porównaj ceny 15
Opinie
1
0
0
0
TOP sprzedawcy
Przeznaczeniedo domu / biuragamingowa
SocketAMD AM5AMD AM5
Formatmicro-ATXmicro-ATX
Fazy zasilania99
Radiator VRM
Wymiary (WxS)244x244 mm244x244 mm
Chipset
ChipsetAMD B650AMD B650
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR54 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania7600 MHz6400 MHz
Maks. wielkość pamięci192 GB192 GB
Obsługa XMP
Obsługa EXPO
Interfejsy dyskowe
SATA 3 (6 Gb/s)4 szt.4 szt.
Złącze M.22 szt.2 szt.
Interfejs M.22xPCI-E 4x2xPCI-E 4x
Chłodzenie dysku SSD M.2
Zintegrowany kontroler RAID
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x1 szt.1 szt.
Liczba gniazd PCI-E 16x1 szt.1 szt.
Obsługa PCI Express4.04.0
Stalowe złącza PCI-E
Złącza na płycie głównej
Moduł TPM
USB 2.02 szt.2 szt.
USB 3.2 gen11 szt.1 szt.
USB C 3.2 gen11 szt.
USB C 3.2 gen21 szt.
ARGB LED strip2 szt.1 szt.
RGB LED strip1 szt.1 szt.
Cechy dodatkoweQ-Flash Plus button, Clear CMOS jumper
Wyjścia wideo
Wyjście HDMI
Wersja HDMIv.2.1v.2.1
DisplayPort
Wersja DisplayPortv.1.4v.1.4
Zintegrowany układ audio
Układ audioRealtekRealtek
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)2.5 Gb/s2.5 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANRealtekRealtek
Złącza na tylnym panelu
USB 2.02 szt.4 szt.
USB 3.2 gen13 szt.2 szt.
USB 3.2 gen21 szt.
USB C 3.2 gen11 szt.
USB C 3.2 gen21 szt.
PS/21 szt.1 szt.
BIOS FlashBack
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU3 szt.4 szt.
CPU Fan 4-pin1 szt.1 szt.
Chassis/Water Pump Fan 4-pin2 szt.3 szt.
Data dodania do E-Katalogpaździernik 2023październik 2022
Glosariusz

Przeznaczenie

Ogólna specjalizacja płyty głównej to rodzaj zadań, do których jest ona zoptymalizowana. Należy zauważyć, że podział według tego wskaźnika jest często raczej umowny, modele o podobnych cechach mogą należeć do różnych kategorii. Jednak podział na rodzaje znacznie ułatwiają wybór.

Oprócz tradycyjnych płyt głównych do domu i biura, obecnie można znaleźć rozwiązania dla wysokowydajnych komputerów PC (High-End Desktop) i serwerów, a także do gier i modeli do przetaktowania (overclocking)(te dwie ostatnie opcje są czasami łączone w jedną kategorię aczkolwiek są to nadal różne typy płyt głównych). Istnieją również wyspecjalizowane modele do kopania kryptowalut, jednak bardzo niewiele z nich jest produkowanych - zwłaszcza, że wiele płyt, które początkowo mają inne przeznaczenie, nadaje się do kopania (miningu) (patrz „Odpowiednie do kopania”).

Oto bardziej szczegółowy opis każdej odmiany:

- Do domu i biura. Płyty główne nienależące do żadnego z bardziej specyficznych typów. Ogólnie rzecz biorąc, ten rodzaj płyty głównej jest bardzo zróżnicowany, obejmuje opcje od niedrogich płyt głównych dka skromnych komputerów biurowych po zaawansowane modele, które są zbliżone do rozwiązań gamingowych i HEDT. Jednak większość rozwiązań z tej kategorii jest przeznaczo...na do prostych, codziennych zadań: pracy z dokumentami, przeglądania stron internetowych, projektowania i 2D-projektowania, gier w niskiej i średniej jakości itp.

- Gamingowa. Płyty pierwotnie zaprojektowane do użytku w zaawansowanych komputerach do gier. Oprócz wysokiej wydajności i kompatybilności z potężnymi komponentami, głównie kartami graficznymi (często kilkoma naraz, w formacie SLI i / lub Crossfire - patrz poniżej), takie modele zwykle mają również określone funkcje i cechy charakterystyczne dla gier. Najbardziej zauważalną z tych cech jest charakterystyczny design, czasem z synchronizacją podświetlenia, a nawet regulacją podświetlenia (patrz niżej), co pozwala na idealne dopasowanie płyty do oryginalnego designu stanowiska do gier. Funkcjonalność płyt do gier może obejmować zaawansowany układ audio, wysokiej klasy kontroler sieciowy w celu zmniejszenia opóźnień w grach online, wbudowane narzędzia programowe do dostrajania i optymalizacji wydajności itp. Ponadto takie modele mogą zapewniać zaawansowane możliwości przetaktowania, czasem nie gorsze od możliwości wyspecjalizowanych płyt dla przetaktowania (patrz poniżej). Czasami granica między rozwiązaniami do gier i overclockingu jest całkowicie zatarta: na przykład poszczególne płyty ustawione przez producenta jako do gier, pod względem funkcjonalności, mogą być bardziej powiązane z modelami overclockingu.

- Do przetaktowania (overclocking). Wysokowydajne płyty główne z rozbudowanym zestawem narzędzi do przetaktowania - zwiększające wydajność systemu poprzez dostrajanie poszczególnych komponentów (głównie poprzez zwiększenie częstotliwości overclockingu używanych przez te komponenty). W większości konwencjonalnych płyt głównych taka konfiguracja wiąże się ze znaczną złożonością i ryzykiem, jest zwykle funkcją nieudokumentowaną i nie jest objęta gwarancją. Jednak w tym przypadku sytuacja jest odwrotna: płyty „overclocking” są tak nazywane, ponieważ funkcja overclockingu została pierwotnie włączona przez producenta. Jedną z najbardziej zauważalnych cech takich modeli jest obecność w oprogramowaniu układowym (BIOS) specjalnych narzędzi programowych do kontroli przetaktowania, dzięki czemu overclocking jest tak bezpieczny i dostępny, jak to tylko możliwe, nawet dla niedoświadczonych użytkowników. Kolejną cechą jest ulepszona kompatybilność z wbudowanymi narzędziami do przetaktowania dostępnymi w zaawansowanych procesorach, modułach RAM itp. Tak czy inaczej, ten konkretny rodzaj płyty głównej będzie najlepszym wyborem dla tych, którzy chcą zbudować wystarczająco wydajny komputer z możliwością eksperymentowania pod względem wydajności.

- HEDT (High-End Desktop). Płyty główne przeznaczone do wysokowydajnych stacji roboczych i innych komputerów PC o podobnym poziomie. Pod wieloma względami są podobne do gamingowych, a czasami nawet pozycjonowane jako do gier, jednak zostały stworzone z myślą o ogólnej wydajności (w tym w zadaniach profesjonalnych), a nie z myślą o pewnej pracy z grami. Jedną z kluczowych cech takich płyt głównych jest rozbudowana funkcjonalność do pracy z pamięcią RAM: przewidziano co najmniej 4 sloty na RAM, a częściej 6 lub więcej, maksymalna częstotliwość RAM to co najmniej 2500 MHz (a częściej 4000 MHz i więcej), a maksymalna wielkość to co najmniej 128 GB. Pozostałe cechy są zwykle na podobnym poziomie. Ponadto oprogramowanie układowe może zapewniać narzędzia do przetaktowania, chociaż pod względem tej funkcjonalności takie płyty są często gorsze od tych do przetaktowania. Należy pamiętać, że takie rozwiązania można początkowo ustawić jako do gier; podstawą klasyfikacji do kategorii HEDT w takich przypadkach jest spełnienie powyższych kryteriów.

- Do serwera. Płyty główne zaprojektowane specjalnie do serwerów. Takie systemy znacznie różnią się od zwykłych komputerów stacjonarnych - w szczególności współpracują z dużymi ilościami dysków i mają zwiększone wymagania dotyczące szybkości i niezawodności przesyłania danych; w związku z tym do budowy serwerów najlepiej jest używać wyspecjalizowanych komponentów, w tym płyt głównych. Do głównych cech takich płyt głównych należy bogactwo slotów na RAM (często więcej niż 4), możliwość podłączenia dużej ilości dysków (koniecznie więcej niż 4 sloty SATA 3, często 8 lub więcej), a także obsługa specjalnych technologii (jak ECC - patrz poniżej). Ponadto takie karty mogą być wykonywane w określonych formatach, takich jak EEB lub CEB (patrz „Współczynnik kształtu”), chociaż istnieją bardziej tradycyjne opcje.

- Przeznaczone do kopania kryptowalut (miningu). Płyty główne zaprojektowane specjalnie do zdobywania kryptowalut (BitCoin, Ethereum itp.). Podkreślamy, że nie chodzi tylko o możliwość takiego zastosowania (patrz „Nadaje się do kopania”), jednak o to, że płyta główna była początkowo pozycjonowana jako rozwiązanie do tworzenia „farmy” kryptowalut. Przypomnij sobie, że kopanie to wydobywanie kryptowaluty poprzez wykonywanie specjalnych obliczeń; najwygodniej jest przeprowadzić takie obliczenia za pomocą kilku wydajnych kart graficznych naraz. W związku z tym jedną z wyróżniających cech płyt miningowych jest obecność kilku (zwykle co najmniej 4) gniazd PCI-E 16x do podłączenia takich kart graficznych. Jednak ta kategoria płyt głównych nie otrzymała zbyt dużej popularności: podobne cechy można znaleźć w przypadku płyt głównych ogólnego przeznaczenia, całkiem możliwe jest osiągnięcie na nich wydajności wystarczającej do efektywnego kopania.

Maksymalna częstotliwość taktowania

Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.

W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM 1500 - 2000 MHz lub mniej jest uważana za bardzo niską, 2000 - 2500 MHz jest skromna, 2500 - 3000 MHz jest średnia, 3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach obsługiwane mogą być 3500 - 4000 MHz, a nawet ponad 4000 MHz.

Obsługa XMP

Możliwość pracy płyty głównej z modułami pamięci RAM obsługującymi technologię XMP (Extreme Memory Profiles). Technologia ta została opracowana przez firmę Intel; jest stosowana w płytach głównych i jednostkach pamięci RAM i działa tylko wtedy, gdy oba te elementy systemu są kompatybilne z XMP. Podobna technologia AMD nosi nazwę AMP.

Główną funkcją XMP jest ułatwienie przetaktowania systemu ("overclockinging"): specjalne profile przetaktowania są wcześniej „wszyte" w pamięć dzięki tej technologii, i w razie potrzeby, użytkownik może wybrać tylko jeden z tych profili bez stosowania skomplikowanych procedur konfiguracji. Jest to nie tylko łatwiejsze, ale także bezpieczniejsze: każdy profil dodany do paska przechodzi test stabilności działania.

Stalowe złącza PCI-E

Obecność na płycie głównej wzmocnionych stalowych złączy PCI-E.

Takie złącza można znaleźć głównie w gamingowych (patrz „Przeznaczenie”) i innych zaawansowanych typach płyt głównych zaprojektowanych do korzystania z wydajnych kart graficznych. Gniazda PCI-E 16x są zwykle wykonane ze stali, przeznaczone tylko dla takich kart graficznych; oprócz samego gniazda, jego mocowanie do płyty ma również wzmocnioną konstrukcję.

Ta cecha oferuje dwie kluczowe zalety w porównaniu z tradycyjnymi plastikowymi złączami. Po pierwsze, pozwala na instalację nawet dużych i ciężkich kart graficznych tak bezpiecznie, jak to możliwe, bez ryzyka uszkodzenia gniazda lub karty. Po drugie, metalowa wtyczka działa jak ekran ochronny i zmniejsza prawdopodobieństwo wystąpienia zakłóceń; jest to szczególnie przydatne w przypadku korzystania z wielu kart graficznych zainstalowanych obok siebie, "side-by-side".

USB C 3.2 gen1

Liczba złączy USB-C 3.2 gen1 znajdujących się na płycie głównej.

Złącza USB-C (wszystkie wersje) służą do podłączenia do płyty głównej portów USB-C znajdujących się na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB-C znajdujących się w obudowie, które jest w stanie obsłużyć.

Przypomnijmy, że USB-C to stosunkowo nowy typ złącza USB, wyróżnia się niewielkimi rozmiarami i dwustronną konstrukcją; takie złącza mają swoje własne cechy techniczne, dlatego należy zapewnić dla nich odpowiednie gniazda. W szczególności USB 3.2 gen1 (wcześniej znane jako USB 3.1 gen1 i USB 3.0) zapewnia szybkość przesyłania danych do 4,8 Gb/s. Dodatkowo na złączu USB-C ta wersja złącza może obsługiwać technologię USB Power Delivery, która umożliwia zasilanie urządzeń zewnętrznych o mocy do 100 W; jednakże funkcja ta nie koniecznie musi występować, jej obecność w złączach danej płyty głównej należy sprawdzać osobno.

USB C 3.2 gen2

Liczba złączy USB-C 3.2 gen2 znajdujących się na płycie głównej.

Złącza USB-C (wszystkie wersje) służą do podłączenia do płyty głównej portów USB-C znajdujących się na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB-C znajdujących się w obudowie, które jest w stanie obsłużyć.

Przypomnijmy, że USB-C to stosunkowo nowy typ złącza USB, wyróżnia się niewielkimi rozmiarami i dwustronną konstrukcją; takie złącza mają swoje własne cechy techniczne, dlatego należy zapewnić dla nich odpowiednie gniazda. W szczególności wersja USB 3.2 gen2 (wcześniej znana jako USB 3.1 gen2 i USB 3.1) zapewnia szybkość przesyłania danych do 10 Gb/s i może obsługiwać technologię USB Power Delivery, która umożliwia zasilanie urządzeń zewnętrznych o mocy do 100 W na port. Jednak obecność Power Delivery na określonych płytach głównych (a nawet w określonych złączach na jednej płycie) należy sprawdzać osobno.

ARGB LED strip

Złącze do podłączenia adresowalnej taśmy LED jako dekoracyjnego podświetlenia obudowy komputera. Ten rodzaj „inteligentnej” taśmy bazuje na specjalnych diodach LED, z których każda składa się z oprawy LED oraz zintegrowanego sterownika, co pozwala na elastyczne sterowanie luminancją za pomocą specjalnego protokołu cyfrowego i tworzenie oszałamiających efektów.

USB 2.0

Liczba portów USB 2.0 znajdujących się na tylnym panelu płyty głównej.

Przypomnijmy, że USB to najpopularniejsze nowoczesne złącze do podłączania różnych zewnętrznych urządzeń peryferyjnych - od klawiatur i myszy do specjalistycznego sprzętu. A USB 2.0 to najstarsza z aktualnych do dziś wersji tego interfejsu; znacznie ustępuje nowszym USB 3.2 zarówno pod względem szybkości (do 480 Mbit / s) jak i zasilania oraz dodatkowej funkcjonalności. Z drugiej strony, nawet takie cechy często wystarczają dla niewymagających urządzeń peryferyjnych (takich samych jak klawiatura/mysz); a urządzenia nowszych wersji można bez problemu podłączyć do złączy tego standardu - wystarczyłoby zasilanie. Tak więc ta wersja USB nadal znajduje się w nowoczesnych płytach głównych, chociaż coraz mniej jest nowych modeli wyposażonych w złącze USB 2.0.

Należy pamiętać, że oprócz złączy na tylnym panelu, połączenia USB mogą być również zapewnione przez złącza na samej płycie (a dokładniej porty na obudowie komputera podłączone do takich złączy). Więcej informacji znajdziesz poniżej.

USB 3.2 gen1

Liczba własnych złączy USB 3.2 gen1, przewidzianych na tylnym panelu płyty głównej. W tym przypadku dotyczy to tradycyjnych, pełnowymiarowych portów typu USB A.

Wersja USB 3.2 gen1 (wcześniej znana jako USB 3.1 gen1 i USB 3.0) jest bezpośrednim następcą i dalszym rozwojem interfejsu USB 2.0. Głównymi różnicami są powiększona 10-krotnie maksymalna prędkość transmisji danych 4,8 Gb/s, a także większa moc zasilania, co jest ważne w przypadku podłączenia kilku urządzeń do jednego portu przez koncetrator (hub). Jednocześnie do tego złącza można podłączyć urządzenia peryferyjne innych wersji.

Im więcej złączy przewidziano w konstrukcji, tym więcej urządzeń peryferyjnych można podłączyć do płyty głównej bez użycia dodatkowego sprzętu (koncentratory USB). Na rynku można znaleźć płyty główne z więcej niż 4 portami USB 3.2 gen1 na tylnym panelu. Należy zwróć uwagę na to, że oprócz złączy na tylnym panelu, połączenia USB mogą zapewnić również złącza na samej płytcie (a dokładniej porty na obudowie podłączone do takich złączy). Więcej informacji znajdziesz poniżej.
Dynamika cen
Gigabyte B650M D3HP często porównują
Gigabyte B650M DS3H często porównują