Polska
Katalog   /   Dom i remont   /   Elektryka i okablowanie   /   Stabilizatory napięcia

Porównanie PowerWalker AVR 3000 SIV FR 3 kVA / 2400 W vs Volt Polska AVR-3000VA 3 kVA

Dodaj do porównania
PowerWalker AVR 3000 SIV FR 3 kVA / 2400 W
Volt Polska AVR-3000VA 3 kVA
PowerWalker AVR 3000 SIV FR 3 kVA / 2400 WVolt Polska AVR-3000VA 3 kVA
Porównaj ceny 7Porównaj ceny 6
TOP sprzedawcy
Typ stabilizatoraz przekaźnikiemz przekaźnikiem
Napięcie wejściowe230 V (1 faza)230 V (1 faza)
Moc2400 W
Moc3 kVA3 kVA
Specyfikacja
Zakres napięcia wejściowego
110 – 280 V /lub 150-270 V./
150 – 270 V
Dokładność napięcia wyjściowego (±)10 %8 %
Sprawność95 %
Woltomierzcyfrowycyfrowy
Gniazdka elektryczne
Gniazdek z uziemieniem1 szt.2 szt.
Komputerowych gniazdek elektrycznych1 szt.
Połączenie klemowe
Poziomy ochrony
Ochrona
przed przegrzaniem
przed zakłóceniami o wysokiej częstotliwości
przed zwarciem
przed przeciążeniem
przed zbyt wysokim / niskim napięciem
przed przegrzaniem
 
przed zwarciem
przed przeciążeniem
przed zbyt wysokim / niskim napięciem
Dane ogólne
Instalacja
wolnostojący
wolnostojący
Chłodzeniebierneaktywne
Stopień ochrony IP20
Uchwyt do przenoszenia
Wymiary297x150x199 mm203x182x297 mm
Waga8.6 kg6.2 kg
Data dodania do E-Katalogpaździernik 2022maj 2022

Moc

Maksymalna moc czynna, dopuszczalna dla tego modelu.

Moc czynna nazywana jest mocą, która w urządzeniach prądu przemiennego jest zużywana na pracę użyteczną lub na wytwarzanie ciepła. Oprócz niej, takie urządzenia zużywają również moc bierną – jest przeznaczana na pracę specyficznych komponentów, przede wszystkim kondensatorów i cewek indukcyjnych. Moc pozorna, wyrażana w woltoamperach (kilowoltoamperach), jest sumą mocy czynnej i biernej, patrz poniżej. Należy zauważyć, że w prostych codziennych sytuacjach do obliczeń wystarczają dane o mocy czynnej, wyrażanej w watach. W szczególności parametr ten jest uważany za kluczowy przy wyborze stabilizatorów do pralek i zmywarek : w pierwszym przypadku moc uważana jest za optymalną od 2 do 5 kW, w drugim – od 1,8 do 2,5 kW.

Tak czy inaczej, całkowita moc czynna podłączonego obciążenia nie powinna przekraczać liczb wskazanych w charakterystyce stabilizatora. Aby uzyskać pełną gwarancję, nie zaszkodzi wziąć pewien margines, lecz ten margines nie powinien być zbyt duży - wzrost dopuszczalnej mocy zauważalnie wpływa na wymiary, wagę i cenę urządzenia. Zwracamy również uwagę, że istnieją formuły, które pozwalają przekonwertować pobór mocy czynnej na pozorną, biorąc pod uwagę rodzaj podłączonego urządzenia elektrycznego; te formuły można znaleźć w dedykowanych źródłach.

Zakres napięcia wejściowego

Zakres napięcia na wejściu stabilizatora, przy którym może on normalnie pracować i dostarczać do obciążenia stałe napięcie 230 lub 400 V (w zależności od liczby faz, patrz wyżej). Im szerszy jest ten zakres, im bardziej uniwersalne jest urządzenie, tym większe skoki napięcia może tłumić bez przekraczania standardowych parametrów pracy. Należy jednak pamiętać, że parametr ten nie jest jedynym, a nawet nie głównym wskaźnikiem jakości pracy: wiele zależy również od dokładności napięcia wyjściowego i szybkości wyzwalania (patrz oba punkty poniżej ).

Należy również pamiętać, że niektóre modele mogą mieć kilka trybów pracy (na przykład z wyjściem 230 V, 230 V lub 240 V). W tym przypadku, w charakterystyce wskazuje się „całkowity” zakres napięcia wejściowego, od najniższego minimum do najwyższego maksimum; rzeczywiste zakresy dla poszczególnych trybów będą się różnić.

Ponadto istnieją stabilizatory, które mogą pracować poza standardowym zakresem napięcia wejściowego: przy niewielkim odchyleniu poza jego granice urządzenie zapewnia stosunkowo bezpieczne wskaźniki wyjściowe (również przy pewnych odchyleniach od nominalnego 230 lub 400 V), jeśli spadek lub wzrost staje się krytyczny, włącza się odpowiednia ochrona (patrz poniżej).

Dokładność napięcia wyjściowego (±)

Największe odchylenie od znamionowego napięcia wyjściowego (230 V lub 400 V w zależności od liczby faz), jakie dopuszcza stabilizator przy pracy w standardowym zakresie napięcia wejściowego (patrz wyżej). Im mniejsze odchylenie, tym wydajniej urządzenie pracuje, tym dokładniej dopasowuje się do „zmian sytuacji” i tym na mniejsze wahania napięcia narażone jest podłączone obciążenie.

Wybierając według tego parametru, warto przede wszystkim zastanowić się, jak wymagające są podłączone urządzenia pod względem stabilności napięcia. Z jednej strony wysoka stabilność jest dobra dla każdego urządzenia, z drugiej zazwyczaj również oznacza wysoką cenę. W związku z tym, zwykle nie ma sensu kupować zaawansowanego stabilizatora do "bezpretensjonalnych" rodzajów obciążeń, takich jak żarówki i grzejniki, lecz w przypadku wrażliwych urządzeń, takich jak sprzęt audio lub komputery, może być bardzo przydatny.

Sprawność

Sprawność stabilizatora to procentowy stosunek ilości energii elektrycznej na wyjściu z urządzenia do ilości energii na wejściu. Innymi słowy, sprawność opisuje, jaka część energii otrzymanej z sieci jest przekazywana przez urządzenie do podłączonego obciążenia bez strat. A straty podczas pracy będą nieuniknione - po pierwsze żaden transformator nie jest doskonały, a po drugie obwody sterujące stabilizatora również wymagają pewnej ilości energii do działania. Jednocześnie wszystkie te koszty są dość niskie, a nawet w stosunkowo prostych nowoczesnych modelach sprawność może sięgać 97-98%.

Gniazdek z uziemieniem

Liczba gniazd na 230 V z uziemieniem przewidziana w konstrukcji stabilizatora.

Niektóre urządzenia elektryczne – w szczególności lodówki i pralki/zmywarki – muszą być zawsze uziemione po podłączeniu. Tego momentu nie należy lekceważyć - istnieje ryzyko poważnego porażenia prądem. W związku z tym liczba uziemionych gniazd odpowiada maksymalnej liczbie takich urządzeń, które można jednocześnie podłączyć do stabilizatora bez użycia rozgałęźników. Jednocześnie całkiem możliwe jest podłączenie nieuziemionych urządzeń do takich gniazd.

Komputerowych gniazdek elektrycznych

Liczba gniazdek elektrycznych w konstrukcji stabilizatora, wykorzystujących złącze standardu IEC 320 C13. Złącze to ma kształt pięciokąta (przypomina prostokąt z dwoma ściętymi rogami) i są w nim trzy styki. Używane jest w różnego rodzaju nowoczesnej elektronice, lecz najszerzej stosowane jest w sprzęcie komputerowym – stąd nazwa. Fizycznie IEC 320 C13 nie jest kompatybilny z konwencjonalnymi wtyczkami 230 V, jednak istnieją kable przejściowe.

Połączenie klemowe

Obecność co najmniej dwóch par zacisków w strukturze stabilizatora - na wejściu i na wyjściu. W przeciwieństwie do gniazd, które są przeznaczone do częstych podłączeń i rozłączeń, połączenie zaciskowe jest zaprojektowane tak, aby trwale przymocować przewody - z grubsza mówiąc "przymocowane - zaciśnięte - zapomniane". Nie oznacza to bezpośredniego podłączenia urządzeń elektrycznych, zwykle energia z zacisków idzie dalej do sieci energetycznej i jest już przez nią rozprowadzana do osobnych gniazd w pomieszczeniu. W związku z tym ta opcja jest typowa dla potężnych modeli (średnio od 3 kVA i więcej, patrz „Moc”), które są przeznaczone do zainstalowania w jednym miejscu jako stały element sieci energetycznej. Często takie stabilizatory w ogóle nie mają własnych gniazd - tylko zaciski.

Ochrona

Przed przegrzaniem. Zabezpieczenie zapobiegające krytycznemu wzrostowi temperatury poszczególnych elementów stabilizatora — np. w przypadku przeciążenia, zwarcia lub awarii układu chłodzenia. Po przekroczeniu określonej wartości temperatury wyłącza urządzenie, aby uniknąć awarii i pożaru. Takie układy są szczególnie ważne w przypadku stabilizatorów półprzewodnikowych - tyrystorowych i triakowych(patrz wyżej). W niektórych modelach funkcja ta może być uzupełniona sygnałem o wzroście temperatury - jest wyzwalany w temperaturze zbliżonej do krytycznej.

Przed zakłóceniami o wysokiej częstotliwości. Zabezpieczenie to tłumi zakłócenia o wysokiej częstotliwości wchodzące na wejście, zapobiegając ich wpływowi na pracę urządzeń podłączonych do stabilizatora. Takie zakłócenia mogą wystąpić na przykład z silników elektrycznych, spawarek itp. Na przykład w systemach audio zniekształcenia o wysokiej częstotliwości powodują nieprzyjemne buczenie z głośników. Zabezpieczenie przed zakłóceniami o wysokiej częstotliwości odfiltrowuje te zniekształcenia, zapewniając gładką falę sinusoidalną na wyjściu.

Przed zwarciem. System zabezpieczający stabilizator w przypadku zwarcia w podłączonym obciążeniu. Zwarcie to sytuacja, w której rezystancja w obwodzie zbliża się do zera; prowadzi to do gwałtownego wzrostu natężenia prądu, przeciążania...sieci energetycznej i samego stabilizatora, a także stwarza ryzyko awarii, a nawet pożaru. Aby uniknąć nieprzyjemnych konsekwencji, przewidywana jest odpowiednia ochrona: odłącza obciążenie w przypadku znacznego przekroczenia w nim prądu. Funkcja ta jest prawie obowiązkowa we współczesnych stabilizatorach.

Przed przeciążeniem. System bezpieczeństwa na wypadek przeciążenia stabilizatora - czyli sytuacja, gdy całkowita moc przyłączeniowa staje się większa niż odpowiednie wskaźniki samego urządzenia (patrz "Moc"). Przyczyną takiej sytuacji może być np. włączenie dodatkowego obciążenia lub zmiana trybu pracy jednego z istniejących obciążeń. W przeciwieństwie do opisanego powyżej zwarcia, podczas przeciążenia wszystkie urządzenia elektryczne działają w trybie zwykłym, tryb pracy samego stabilizatora nie jest zwykły - co może doprowadzić do jego awarii, a nawet pożaru. Aby tego uniknąć, stosuje się zabezpieczenie przed przeciążeniem. Jego konkretna realizacja może się różnić. W niektórych modelach obciążenie jest wyłączane natychmiast, w innych – jakiś czas po sygnale ostrzegawczym, co daje użytkownikowi możliwość zmniejszenia zużycia energii i uniknięcia aktywacji systemu.

Przed nadmiernym / zbyt niskim napięciem. Jest to system, chroniący urządzenie przed zbyt niskim lub zbyt wysokim napięciem wejściowym. Znaczne przekroczenie zakresu napięcia wejściowego (patrz wyżej) jest niebezpieczne nie tylko ze względu na ryzyko uszkodzenia samego stabilizatora: w takich warunkach możliwości urządzenia nie wystarczają do pełnowartościowego zabezpieczenia podłączonego obciążenia, co może skutkować problemami. A funkcja ta zapobiega takim konsekwencjom: jeśli napięcie wejściowe przekroczy dopuszczalne wartości (mogą być szersze od wartości roboczych, patrz „Zakres napięcia wejściowego”), stabilizator jest odłączany od sieci. Jednocześnie niektóre jego funkcje mogą nadal działać - na przykład woltomierz, który pozwala na ocenę „stanu rzeczy” w sieci na wejściu. W niektórych modelach dostępna jest funkcja automatycznego włączania, gdy napięcie powraca do granic roboczych.

Chłodzenie

Sposób odprowadzania ciepła z nagrzewających się elementów stabilizatora.

- Pasywne. Pasywnym jest nazywany każdy typ chłodzenia, który nie przewiduje odprowadzania ciepła i odbywa się wyłącznie poprzez naturalne przenoszenie ciepła i konwekcję. W tego typu stabilizatorach małej mocy układ chłodzenia jako taki może być całkowicie nieobecny - ilość wytwarzanego ciepła jest stosunkowo niewielka, a do jego odprowadzenia do otoczenia wystarcza naturalna przewodność cieplna obudowy i samych części. W bardziej zaawansowanych modelach mogą być instalowane radiatory. Główną zaletą każdego pasywnego chłodzenia jest całkowity brak hałasu. W dodatku takie systemy są niedrogie, nie zużywają energii, zajmują stosunkowo mało miejsca i są bardzo niezawodne – w większości przypadków po prostu nie ma tam się czemu psuć. Z drugiej strony, są one znacznie gorsze od aktywnego chłodzenia pod względem wydajności i dlatego słabo nadają się do mocnych urządzeń, zwłaszcza tyrystorów i triaków (patrz „Rodzaj”).

- Aktywny. Chłodzenie aktywne polega na wymuszonym odprowadzaniu ciepła z elementów urządzenia. Zwykle odbywa się to poprzez połączenie radiatorów z wentylatorami, które wydmuchują nadmiar ciepła na zewnątrz obudowy. Takie układy charakteryzują się niezwykle wysoką wydajnością, mogą być stosowane w stabilizatorach o dowolnej mocy, a dla modeli półprzewodnikowych (patrz „Rodzaj”) aktywne chłodzenie jest po prostu niezastąpione. Jednak ta efektywność odbywa się kosztem wys...okiego poziomu hałasu, a także znacznych wymiarów i wagi, co odpowiednio wpływa na całe urządzenie. Wentylatory mają tendencję do wciągania kurzu do wnętrza obudowy, dlatego należy je sprawdzać i okresowo czyścić „wypełnienie” stabilizatora; a jeśli wentylator się zepsuje, tak naprawdę, całe chłodzenie przestaje działać. Ponadto koszt takich systemów jest znacznie wyższy niż pasywnych.
Dynamika cen