Przepustowość
Przepustowość przełącznika to maksymalna ilość ruchu, jaką może obsłużyć. Wskazany w gigabitach na sekundę.
Parametr ten bezpośrednio zależy od liczby portów sieciowych w urządzeniu (z wyłączeniem Uplink). W rzeczywistości, nawet jeśli przepustowość nie jest wymieniona w charakterystyce, nadal można ją obliczyć za pomocą następującego wzoru: liczba portów pomnożona przez przepustowość pojedynczego portu i pomnożona przez dwa (ponieważ uwzględniany jest zarówno ruch przychodzący, jak i wychodzący ). Na przykład model z 8 gniazdami Gigabit Ethernet i 2 portami SFP będzie miał przepustowość (8 * 1 + 2 * 1) * 2 = 20 Gb/s.
Wybór tego wskaźnika jest dość oczywisty: należy oszacować szacunkowe wielkości ruchu w obsługiwanym segmencie sieci i upewnić się, że przepustowość przełącznika będzie się na niego nakładać z marginesem co najmniej 10-15% (da to dodatkową gwarancję w przypadku sytuacji awaryjnych). Jednocześnie, jeśli planujesz często pracować przy wysokich, zbliżonych do maksymalnych obciążeniach, nie zaszkodzi wyjaśnienie innej cechy, takiej jak wewnętrzna przepustowość przełącznika. Jest to zwykle podane w szczegółowym opisie technicznym, a jeśli ta wartość jest mniejsza niż całkowita przepustowość, mogą pojawić się poważne problemy podczas pracy przy znacznych obciążeniach.
2.5 Gigabit Ethernet
Liczba standardowych złączy sieciowych RJ-45 formatu
2.5 Gigabit Ethernet, przewidzianych w konstrukcji przełącznika. Porty te są wstecznie kompatybilne z niższymi prędkościami. Porty tego typu mogą być używane w połączeniu z serwerami NAS lub np. z routerami obsługującymi Wi-Fi 6/6E, gdzie ten format również się rozpowszechnił.
10 Gigabit Ethernet
Liczba standardowych
złączy sieciowych 10Gigabit Ethernet LAN przewidzianych w konstrukcji przełącznika.
Ten format jest profesjonalny: zapewnia prędkości do 10 Gbit/s (co znajduje odzwierciedlenie w nazwie) i jest przeznaczony głównie do zadań związanych z przetwarzaniem dużych ilości ruchu. Niemniej jednak wsparcie dla Gigabit Ethernet znajduje się obecnie nawet w kontrolerach sieciowych komputerów PC i laptopów, nie mówiąc już o bardziej specjalistycznym sprzęcie. A liczba złączy odpowiada liczbie urządzeń, które można jednocześnie bezpośrednio podłączyć do przełącznika za pośrednictwem tego interfejsu. Należy pamiętać, że w niektórych „przełącznikach” osobne złącza tego typu są łączone z optycznym SFP lub SFP+ (patrz niżej). Złącza te są oznaczone jako „combo” i liczą się zarówno do sieci LAN, jak i SFP / SFP +.
SFP (światłowód)
Liczba portów optycznych w standardzie SFP przewidziana w konstrukcji przełącznika.
Transmisja danych za pomocą kabla światłowodowego jest wygodna, ponieważ taki kabel nie jest podatny na zakłócenia elektromagnetyczne; a prędkość połączenia przez SFP może osiągnąć 2,7 Gb/s. Jednocześnie czyste włókno jest rzadko używane, więc nawet zaawansowane przełączniki zapewniają niewielką liczbę portów SFP - znacznie mniej niż Ethernet jednego lub drugiego typu (patrz wyżej). Tak więc najbardziej rozpowszechnione są rozwiązania na
2 złącza lub
4 złącza tego typu, chociaż jest ich więcej - 6, 8, a nawet
10 i więcej. Należy pamiętać, że przełączniki mogą używać tak zwanych złączy combo, które łączą SFP i Ethernet; obecność takich portów jest określona w uwagach, są one brane pod uwagę zarówno przy obliczaniu sieci LAN, jak i przy obliczaniu SFP. W każdym razie połączenie światłowodowe jest często używane jako łącze w górę (patrz poniżej).
Zauważ również, że w tym przypadku mówimy o oryginalnym standardzie SFP; dane dotyczące złączy w formacie SFP + są wskazane osobno (patrz poniżej).
SFP+ (światłowód)
Liczba portów optycznych
portów SFP+, przewidziana w konstrukcji przełącznika. Należy zaznaczyć, że chodzi o zwykłe porty sieciowe; wejścia Uplink również mogą używać tego interfejsu, jednak ich liczba jest podawana osobno nawet w tym przypadku (patrz poniżej).
Ogólne zalety włókna optycznego w porównaniu z konwencjonalnym kablem Ethernet to większy zasięg i niewrażliwość na zakłócenia elektromagnetyczne. A konkretniej SFP+ jest rozwinięciem oryginalnego standardu SFP; w przełącznikach takie złącza zwykle działają z prędkością 10 GB/s. Jeśli chodzi o liczbę takich portów, pomimo wszystkich swoich zalet, włókno optyczne w sprzęcie sieciowym jest używane dość rzadko. Dlatego największą popularnością cieszą się przełączniki na
1 - 2, rzadziej
4 złącza SFP+, choć może być ich więcej. Warto również wziąć pod uwagę, że w przełącznikach mogą być używane tzw. złącza combo, łączące SFP+ i RJ-45; obecność takich portów jest określana w uwagach, są one uwzględniane zarówno przy obliczaniu RJ-45, jak i przy obliczaniu SFP+.
Uplink
Liczba łączy nadrzędnych przewidzianych w konstrukcji przełącznika.
„Uplink” w tym przypadku nie jest typem, ale specjalizacją konektora: jest to nazwa interfejsu sieciowego, za pośrednictwem którego przełącznik (i podłączone do niego urządzenia sieciowe) komunikuje się z sieciami zewnętrznymi (w tym Internetem) lub siecią segmenty. Innymi słowy, jest to rodzaj „bramy”, przez którą przekazywany jest cały ruch z segmentu sieci obsługiwanego przez przełącznik. Uplink, w szczególności, może być używany do łączenia się z podobnym „przełącznikiem” (dla poziomej rozbudowy sieci) lub z urządzeniem wyższego poziomu (takim jak przełącznik główny).
W związku z tym liczba łączy w górę to maksymalna liczba połączeń zewnętrznych, które przełącznik może zapewnić bez użycia dodatkowego sprzętu. Konkretny typ takiego złącza może być inny, ale zwykle jest to jedna z odmian LAN lub SFP; zobacz „Typ łącza nadrzędnego”, aby uzyskać szczegółowe informacje.
Typ Uplink
Typ złącza (złączy) używanego przez przełącznik jako interfejs Uplink.
Więcej szczegółów na temat takiego interfejsu można znaleźć powyżej; tutaj zauważamy, że te same porty sieciowe są zwykle używane jako Uplink, co do podłączania poszczególnych urządzeń do przełącznika. Oto główne opcje takich złączy:
- Fast Ethernet - Złącze sieciowe LAN (na „skrętkę”) z obsługą prędkości do 100 Mbit/s. Taka prędkość jest uważana przez współczesne standardy za niską, natomiast port Uplink stawia zwiększone wymagania dotyczące przepustowości – w końcu przez niego przechodzi ruch ze wszystkich obsługiwanych przez przełącznik urządzeń. Dlatego w tej roli porty Fast Ethernet są używane głównie w niedrogich i starszych modelach.
- Gigabit Ethernet - złącze LAN z obsługą prędkości do 1 Gb/s. Ta prędkość jest często wystarczająca nawet dla dość rozbudowanej sieci, podczas gdy same złącza są stosunkowo niedrogie.
- 10Gigabit Ethernet - złącze LAN z obsługą prędkości do 10 Gb/s. Takie możliwości pozwalają na komfortową pracę nawet przy bardzo dużym natężeniu ruchu, jednak znacząco wpływają na cenę przełącznika. Dlatego ta opcja jest rzadkością, głównie w modelach z wyższej półki.
- SFP. Złącze do kabla światłowodowego obsługujące prędkości rzędu 2,7 Gb/s. Wyższe prędkości występują również wśród standardów Ethernet, ale światłowód ma ważną zaletę: jest całkowicie niewrażliwy na zakłócenia elektromagnetyczne.
- SFP+. Ewolucja opisanego powy...żej standardu SFP, w którym teoretyczna maksymalna prędkość wzrosła do 16 Gb/s. Najbardziej zaawansowany dostępny obecnie interfejs sieciowy ogólnego przeznaczenia - ale także najdroższy. Obecność takich złączy Uplink jest więc typowa głównie dla modeli z wyższej półki z dużą liczbą portów.
Należy pamiętać, że projekt może przewidywać kilka typów łączy nadrzędnych jednocześnie, w którym to przypadku są one rejestrowane przez ukośną linię - na przykład SFP / Gigabit Ethernet. W tym przypadku możemy mówić zarówno o pojedynczych portach, jak i połączonych złączach zdolnych do pracy w jednym z dwóch trybów – w zależności od podłączonego kabla. Te szczegóły należy wyjaśnić osobno.
Port konsolowy
Obecność
portu konsoli w przełączniku. Złącze to służy do sterowania ustawieniami urządzenia z osobnego komputera, który pełni rolę panelu sterowania - konsoli. Zaletą tego typu operacji jest to, że dostęp do funkcji przełącznika jest niezależny od warunków sieciowych; ponadto możesz użyć specjalnych narzędzi na konsoli, które zapewniają bardziej rozbudowane możliwości niż zwykły interfejs sieciowy lub protokoły sieciowe (patrz „Sterowanie”). Najczęściej port konsoli wykorzystuje złącze RS-232.
Standardy
Routing statyczny odbywa się zgodnie ze standardowym schematem, jednak do routingu dynamicznego używane są różne protokoły. Idea dynamiki polega na tym, że tabela tras jest stale edytowana programowo, w trybie automatycznym. W tym celu urządzenia sieciowe (a dokładniej działające na nich programy trasujące) wymieniają między sobą informacje o usługach, na podstawie których do tablicy zapisywane są optymalne adresy. Jednym z podstawowych pojęć routingu dynamicznego jest
metryka - złożony wskaźnik, który określa warunkową odległość do określonego adresu (innymi słowy, jak blisko jest ta lub inna trasa od optymalnej). Różne protokoły wykorzystują różne sposoby definiowania i udostępniania metryk; oto niektóre z najczęstszych opcji:
—
ODP Jeden z najczęściej używanych protokołów routingu dynamicznego; został po raz pierwszy zastosowany w 1969 roku w ARPANET, który stał się prekursorem współczesnego Internetu. Odnosi się do tzw. algorytmów wektora odległości: metryka w protokole RIP jest wskazywana przez wektor odległości między routerem a węzłem sieci, a każdy taki wektor zawiera informację o kierunku przesyłania danych i liczbie „przeskoków” (sekcje między węzłami pośrednimi) do odpowiedniego urządzenia sieciowego. Podczas korzystania z protokołu RIP metryki są przesyłane przez sieć co 30 sekund; jednocześnie, po otrzymaniu od „sąsiada” danych o znanych mu węzłach, router dokonuje szeregu wyjaśnień i uzupełnień do tych danych (
...w szczególności informacji o sobie i bezpośrednio podłączonych urządzeniach sieciowych) i przesyła dalej. Po otrzymaniu aktualnych danych w całej sieci router wybiera dla każdego węzła najkrótszą trasę z kilku otrzymanych alternatyw i zapisuje ją w tablicy routingu.
Zaletami protokołu RIP są łatwość implementacji i niewymagające wymagania. Z drugiej strony słabo nadaje się do dużych sieci: maksymalna liczba przeskoków w RIP jest ograniczona do 15, a komplikacja topologii prowadzi do znacznego wzrostu ruchu usług i obciążenia części obliczeniowej sprzętu - w rezultacie rzeczywista wydajność sieci spada. W związku z tym bardziej zaawansowane protokoły, takie jak (E)IGRP i OSPF (patrz poniżej), stały się bardziej powszechne w zastosowaniach profesjonalnych.
— IGRP. Zastrzeżony protokół routingu stworzony przez Cisco dla systemów autonomicznych (innymi słowy sieci lokalnych z jedną polityką routingu z Internetem). Podobnie jak RIP (patrz wyżej), odnosi się do protokołów wektora odległości, jednak używa znacznie bardziej skomplikowanej procedury określania metryki: uwzględnia nie tylko liczbę przeskoków, jednak także opóźnienie, przepustowość, rzeczywiste przeciążenie sieci , itp. Ponadto protokół implementuje szereg specyficznych mechanizmów poprawiających niezawodność komunikacji. Dzięki temu protokół IGRP doskonale nadaje się nawet do dość złożonych sieci o rozbudowanej topologii.
— EIGRP. Ulepszony i unowocześniony następca opisanego powyżej protokołu IGRP, opracowanego przez to samo Cisco. Stworzony jako alternatywa dla OSPF (patrz poniżej), łączy właściwości protokołów i standardów wektora odległości ze śledzeniem stanu łącza. Jedną z głównych zalet w stosunku do oryginalnego protokołu IGRP było ulepszenie algorytmu rozpowszechniania danych o zmianach topologii w sieci, dzięki czemu prawdopodobieństwo wystąpienia pętli (charakterystyczne dla wszystkich standardów wektora odległości) zostało zredukowane niemal do zera. A wśród różnic między tym protokołem a OSPF, wyższa wydajność i bardziej zaawansowany algorytm obliczania metryk są deklarowane przy mniejszej złożoności konfiguracji i wymaganiach dotyczących zasobów.
OSPF. Otwarty protokół routingu systemu autonomicznego stworzony przez IETF (Internet Design Council) i zaimplementowany po raz pierwszy w 1988 roku. Odnosi się do protokołów ze śledzeniem stanu łącza, do budowania tras wykorzystuje tzw. algorytm Dijkstry (algorytm wyszukiwania najkrótszych ścieżek). Proces routingu OSPF jest następujący. Początkowo router komunikuje się z podobnymi urządzeniami, ustanawiając „relację sąsiada”; sąsiedzi to routery w tej samej strefie autonomicznej. Następnie sąsiedzi wymieniają między sobą metryki, synchronizując dane, a po takiej synchronizacji wszystkie routery otrzymują kompletną bazę danych stanu wszystkich łączy w sieci (LSDB). Już na podstawie tej bazy każde z tych urządzeń buduje własną tablicę tras przy użyciu algorytmu Dijkstry. Główne zalety OSPF to duża szybkość (szybkość konwergencji), wysoki stopień optymalizacji wykorzystania kanałów oraz możliwość pracy z maskami sieci o zmiennej długości (co jest szczególnie wygodne przy ograniczonym zasobach IP adresy). Wady to dokładność zasobów obliczeniowych routerów, znaczny wzrost obciążenia przy dużej liczbie takich urządzeń w sieci oraz konieczność komplikowania topologii w dużych sieciach, dzieląc takie sieci na odrębne strefy (obszar). Ponadto OSPF nie ma jasnych kryteriów określania metryki: „koszt” każdego przeskoku można obliczyć według różnych parametrów, w zależności od producenta przełącznika i ustawień wybranych przez administratora. Rozszerza to możliwości konfiguracji routingu i jednocześnie znacznie komplikuje tę procedurę.
Nowoczesne przełączniki mogą zapewniać inne protokoły routingu oprócz tych opisanych powyżej.