Sprawność
Sprawność w tym przypadku to stosunek mocy zasilacza (patrz „Moc”) do jego zużycia energii. Im wyższa sprawność, tym wydajniejszy zasilacz, tym mniej energii pobiera z sieci przy tej samej mocy wyjściowej i tym tańsza jest jego eksploatacja. Sprawność może się różnić w zależności od obciążenia; specyfikacja może wskazywać zarówno minimalną sprawność, jak i jej wartość przy średnim obciążeniu (50%).
Należy zauważyć, że od tego wskaźnika bezpośrednio zależy zgodność z takim lub innym poziomem wydajności 80PLUS (więcej szczegółów w „Certyfikat”).
Chłodzenie
-
1 wentylator. Najpopularniejszy wariant. Moc takiego układu jest wystarczająca do chłodzenia zasilaczy o mocy m.in. powyżej średniej i jest on stosunkowo niedrogi. Natomiast zauważalny jest hałas wentylatora, szczególnie w niedrogich zasilaczach o małej średnicy wentylatora (patrz „Średnica wentylatora”).
-
2 wentylatory. Drugi wentylator jest zwykle instalowany w mocnych zasilaczach, dla których moc jednego wentylatora nie wystarcza. Ceną, jaką trzeba zapłacić za tę wydajność, oprócz zwiększonych kosztów, jest zwiększony poziom hałasu.
-
Półpasywny. Funkcja pozwalająca na automatyczne wyłączenie układu chłodzenia zasilacza w sytuacjach, gdy obciążenie zasilacza jest niskie, a wydzielenie ciepła ograniczone. Występuje tylko w modelach z aktywnym układem chłodzenia. Przypomnijmy, że układy tego typu są wydajniejsze od pasywnych, ale zużywają dodatkową energię i generują hałas podczas pracy. W związku z tym przy niewielkim obciążeniu, gdy intensywne chłodzenie nie jest wymagane, rozsądniej jest wyłączyć wentylatory - oszczędza to energię i zmniejsza poziom hałasu.
-
Pasywny (radiatory). W porównaniu z wentylatorami, radiatory mają szereg zalet: na przykład nie generują żadnego hałasu i nie wymagają własnego zasilania (co zmniejsza całkowite zużycie energii). Są jednak w efekcie znacznie mniej wydajne – moc zasila
...czy z pasywnym chłodzeniem nie przekracza 600 W. Ponadto takie zasilacze są dość drogie.Średnica wentylatora
Średnica wentylatora (wentylatorów) w układzie chłodzenia zasilacza.
Duża średnica pozwala na dobrą wydajność przy stosunkowo niskich obrotach, co z kolei zmniejsza hałas i zużycie energii. Duże wentylatory są jednak droższe od małych i zajmują dużo miejsca, co wpływa na ogólną wielkość zasilacza. Podkreślamy też, że mały wentylator nie jest jeszcze oznaką taniego zasilacza – taki sprzęt można spotkać również w dość zaawansowanych modelach przez wzgląd na zmniejszenie wymiarów.
Jeśli chodzi o konkretne średnice, najmniejszą wartością, jaką można znaleźć we współczesnych zasilaczach konsumenckich, jest
80 mm. Najpopularniejsza opcja to
120 mm, ten rozmiar daje dobrą wydajność i stosunkowo niski poziom hałasu przy rozsądnej cenie i wymiarach. Nieco rzadziej spotykane są większe średnice –
135 mm i
140 mm.
Rodzaj łożyska
Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:
- Slajdy. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie urządzenia są proste, niezawodne i trwałe, ale ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania, zapewniają znacznie mniejsze tarcie.
- Toczenie. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności nieco ustępuje zarówno tym samym łożyskom ślizgowym, jak i bardziej zaawansowanym urządzeniom hydrodynamicznym. Dlatego chociaż łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wymienione typy.
- Hydrodynamiczny. Łożyska tego typu wypełnione są specjalnym płynem; podczas obracania tworzy warstwę, po której ślizga się ruchoma część łożyska. Pozwala to uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znaczni...e zmniejsza tarcie w porównaniu z poprzednimi typami. Ponadto łożyska te są ciche i bardzo niezawodne. Do ich wad należy stosunkowo wysoki koszt, ale w praktyce ten szczegół jest często niewidoczny na tle ceny całego systemu. Dlatego ta opcja jest obecnie niezwykle popularna, można ją znaleźć w systemach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.
- Centrowanie magnetyczne. Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane za najbardziej zaawansowany typ łożysk, są niezawodne i ciche, ale są drogie.
Standard ATX 12V v.
Standard dla zasilaczy uzupełniający specyfikacje ATX w zakresie zasilania 12 V. Wprowadzony od czasów procesora Intel Pentium 4. Pierwsza seria standardu wykorzystywała głównie linię +5 V, od wersji 2.0 została wprowadzona linia +12 V w celu pełnego zasilania podzespołów komputera. Również w drugiej generacji pojawiło się 24-pinowe złącze zasilania, które jest używane w większości współczesnych płyt głównych.
Standard EPS 12V v.
Wersja standardu EPS12V, z którą zgodny jest zasilacz.
Standard EPS12V jest przeznaczony przede wszystkim dla energochłonnych komputerów osobistych (ponad 700 W, patrz „Moc”) i serwerów klasy podstawowej. Te zasilacze mają 24-pinowe złącze do płyty głównej i 8-pinowe złącze do zasilania procesora (czasami więcej niż jedno, więcej szczegółów można znaleźć w „Zasilanie płyty głównej/CPU”). Charakteryzują się również zwiększoną niezawodnością w porównaniu do ATX12V. Są one kompatybilne z większością płyt głównych w standardzie ATX, jednak w starych płytach głównych mogą wystąpić problemy z kompatybilnością złączy, dlatego kwestię tę należy wyjaśnić osobno (jednakże w celu rozwiązania tego problemu w niektórych zasilaczach części wtyczki są zdejmowane, co umożliwia zmniejszenie ich w razie potrzeby do wymiarów złączy na płycie głównej).
Zasilanie MB/CPU
Liczba i rodzaj złączy dostępnych w zasilaczu do zasilania płyty głównej lub procesora.
Parametr ten jest zapisywany jako suma kilku liczb, na przykład „24+4”. Pierwsza liczba oznacza liczbę pinów w złączu do zasilania płyty głównej; w zdecydowanej większości przypadków jest to właśnie 24, ponieważ współczesne płyty główne standardowo wykorzystują złącze 24-pinowe. Druga liczba opisuje gniazdo do zasilania procesora; większość procesorów klasy podstawowej i średniej używa zasilania 4-pinowego, podczas gdy potężne układy mogą wymagać zasilania 8-pinowego. Może być kilka 4- lub 8-pinowych złączy - licząc na potężne "żarłoczne" procesory.
Osobny przypadek stanowią zasilacze typu „24 (20+4)”. Posiadają one dwie oddzielne wtyczki - 20 pin i 4 pin, co umożliwia zasilanie z takich zasilaczy tak płyt głównych 24-pinowych, jak i starszych płyt głównych 20-pinowych. Jednocześnie w takich modelach nie ma oddzielnego zasilacza dla procesora - jest on zasilany tylko przez gniazdo, a 4-pinowej wtyczki nie można podłączyć do żadnych innych elementów, z wyjątkiem płyty głównej.
Obecnie na rynku dostępne są zasilacze z następującym zasilaniem płyty głównej:
24 pin (20+4),
24+4 pin,
24+8 (4+4) pin,
24+8+8 (4+4) pin.
SATA
Liczba złączy zasilania SATA zapewnionych w zasilaczu.
Obecnie SATA jest standardowym interfejsem do podłączania wewnętrznych dysków twardych, można go również znaleźć w innych typach dysków (SSD, SSHD itp.). Ten interfejs składa się ze złącza danych, które łączy się z płytą główną, i złącza zasilania, które łączy się z zasilaczem. W związku z tym w tym punkcie chodzi o liczbę wtyczek zasilania SATA zapewnionych w zasilaczu. Liczba ta odpowiada liczbie dysków SATA, które mogą być jednocześnie zasilane z tego modelu.
MOLEX
Liczba złączy Molex (IDE) przewidziana w konstrukcji zasilacza.
Początkowo złącze to było przeznaczone do zasilania urządzeń peryferyjnych interfejsu IDE, przede wszystkim dysków twardych. I chociaż samo IDE jest dziś całkowicie przestarzałe i nie jest używane w nowych komponentach, złącze zasilania Molex nadal jest instalowane w zasilaczach i prawie bezbłędnie. Prawie każdy współczesny zasilacz ma co najmniej
1-2 takie złącza, a w modelach z wyższej półki liczba ta może wynosić
7 lub więcej. Ta sytuacja wynika z faktu, że Molex IDE jest dość uniwersalnym standardem, a za pomocą najprostszych adapterów można zasilać komponenty z innym interfejsem zasilania. Na przykład są adaptery Molex - SATA do napędów, Molex - 6 pin do kart graficznych itp.