Polska
Katalog   /   Komputery   /   Podzespoły   /   Zasilacze

Porównanie Zalman GigaMax GV II ZM650-GVII vs Corsair TX-M Series TX650M

Dodaj do porównania
Zalman GigaMax GV II ZM650-GVII
Corsair TX-M Series TX650M
Zalman GigaMax GV II ZM650-GVIICorsair TX-M Series TX650M
Porównaj ceny 14
od 425 zł
Produkt jest niedostępny
TOP sprzedawcy
Moc650 W650 W
StandardATXATX
Dane techniczne
Typ PFCaktywneaktywne
Sprawność88 %92 %
Chłodzenie1 wentylator1 wentylator
Średnica wentylatora120 mm120 mm
Rodzaj łożyskatoczne
Certyfikat80+ Bronze80+ Gold
Standard ATX 12V v.2.312.4
Standard EPS 12V v.2.92
Złącza zasilania
Zasilanie MB/CPU24+8 (4+4) pin24+8 (4+4) pin
SATA5 szt.6 szt.
MOLEX4 szt.4 szt.
PCI-E 8pin (6+2)2 szt.4 szt.
Floppy
Okablowanienie modularnepółmodularne
Przewody w oplocie
Długość kabli
MB500 mm610 mm
CPU650 mm650 mm
SATA500 mm700 mm
MOLEX750 mm
PCI-E450 mm750 mm
Wydajność prądowa i moc
+3.3V20 А25 А
+5V18 А25 А
+12V154 А51 А
-12V0.3 А0.8 А
+5Vsb2.5 А3 А
Moc +12V648 W612 W
Zasilanie +3.3V +5V110 W130 W
Moc -12V3.6 W9.6 W
Moc +5Vsb12.5 W15 W
Dane ogólne
Zabezpieczenie przed zbyt wysokim napięciem wyjściowym (OVP)
Zabezpieczenie przed przeciążeniem (OPP)
Zabezpieczenie przed zwarciem (SCP)
ZabezpieczeniaOCP, OTP, UVP
Poziom hałasu25 dB21 dB
Gwarancja producenta5 lat7 lat
Wymiary (WxSxG)86x150x140 mm86x150x140 mm
Waga2 kg1.7 kg
Data dodania do E-Katalogmarzec 2020wrzesień 2017

Sprawność

Sprawność w tym przypadku to stosunek mocy zasilacza (patrz „Moc”) do jego zużycia energii. Im wyższa sprawność, tym wydajniejszy zasilacz, tym mniej energii pobiera z sieci przy tej samej mocy wyjściowej i tym tańsza jest jego eksploatacja. Sprawność może się różnić w zależności od obciążenia; specyfikacja może wskazywać zarówno minimalną sprawność, jak i jej wartość przy średnim obciążeniu (50%).

Należy zauważyć, że od tego wskaźnika bezpośrednio zależy zgodność z takim lub innym poziomem wydajności 80PLUS (więcej szczegółów w „Certyfikat”).

Rodzaj łożyska

Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:

- Slajdy. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie urządzenia są proste, niezawodne i trwałe, ale ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania, zapewniają znacznie mniejsze tarcie.

- Toczenie. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności nieco ustępuje zarówno tym samym łożyskom ślizgowym, jak i bardziej zaawansowanym urządzeniom hydrodynamicznym. Dlatego chociaż łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wymienione typy.

- Hydrodynamiczny. Łożyska tego typu wypełnione są specjalnym płynem; podczas obracania tworzy warstwę, po której ślizga się ruchoma część łożyska. Pozwala to uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znaczni...e zmniejsza tarcie w porównaniu z poprzednimi typami. Ponadto łożyska te są ciche i bardzo niezawodne. Do ich wad należy stosunkowo wysoki koszt, ale w praktyce ten szczegół jest często niewidoczny na tle ceny całego systemu. Dlatego ta opcja jest obecnie niezwykle popularna, można ją znaleźć w systemach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.

- Centrowanie magnetyczne. Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane za najbardziej zaawansowany typ łożysk, są niezawodne i ciche, ale są drogie.

Certyfikat

Posiadanie przez zasilacz certyfikatu 80+ lub jego brak. Ten certyfikat wskazuje na wysoką wydajność energetyczną: aby go uzyskać, sprawność (patrz wyżej) musi wynosić co najmniej 80%, przy czym w różnych trybach (20%, 50% i 100% maksymalnego załadunku). Istnieje kilka stopni 80+:

- 80+. Oryginalna wersja certyfikatu zakładająca sprawność co najmniej 82% (co najmniej 85% przy 50% obciążeniu).

- 80+ White. Druga nazwa oryginalnego certyfikatu 80+ (patrz wyżej).

- 80+ Bronze - sprawność nie mniejsza niż 85% (dla połowy załadunku - 88%).

- 80+ Silver - odpowiednio 87% (90% dla połowy załadunku).

- 80+ Gold - 89% (92% dla połowy załadunku).

- 80+ Platinium - 90% (94% dla połowy załadunku).

- 80+ Titanium - 94% (96% dla połowy załadunku).

Współczynnik mocy (patrz „Rodzaj układu PFC”) musi wynosić co najmniej 0,9 dla niższych poziomów i co najmniej 0,95 dla poziomu Platinum. Należy również zauważyć, że w przypadku nadmiarowego zasilania używanego w systemach serwerowych wymagania dotyczące sprawności są nieco niższe.

Standard ATX 12V v.

Standard dla zasilaczy uzupełniający specyfikacje ATX w zakresie zasilania 12 V. Wprowadzony od czasów procesora Intel Pentium 4. Pierwsza seria standardu wykorzystywała głównie linię +5 V, od wersji 2.0 została wprowadzona linia +12 V w celu pełnego zasilania podzespołów komputera. Również w drugiej generacji pojawiło się 24-pinowe złącze zasilania, które jest używane w większości współczesnych płyt głównych.

Standard EPS 12V v.

Wersja standardu EPS12V, z którą zgodny jest zasilacz. Standard EPS12V jest przeznaczony przede wszystkim dla energochłonnych komputerów osobistych (ponad 700 W, patrz „Moc”) i serwerów klasy podstawowej. Te zasilacze mają 24-pinowe złącze do płyty głównej i 8-pinowe złącze do zasilania procesora (czasami więcej niż jedno, więcej szczegółów można znaleźć w „Zasilanie płyty głównej/CPU”). Charakteryzują się również zwiększoną niezawodnością w porównaniu do ATX12V. Są one kompatybilne z większością płyt głównych w standardzie ATX, jednak w starych płytach głównych mogą wystąpić problemy z kompatybilnością złączy, dlatego kwestię tę należy wyjaśnić osobno (jednakże w celu rozwiązania tego problemu w niektórych zasilaczach części wtyczki są zdejmowane, co umożliwia zmniejszenie ich w razie potrzeby do wymiarów złączy na płycie głównej).

SATA

Liczba złączy zasilania SATA zapewnionych w zasilaczu.

Obecnie SATA jest standardowym interfejsem do podłączania wewnętrznych dysków twardych, można go również znaleźć w innych typach dysków (SSD, SSHD itp.). Ten interfejs składa się ze złącza danych, które łączy się z płytą główną, i złącza zasilania, które łączy się z zasilaczem. W związku z tym w tym punkcie chodzi o liczbę wtyczek zasilania SATA zapewnionych w zasilaczu. Liczba ta odpowiada liczbie dysków SATA, które mogą być jednocześnie zasilane z tego modelu.

PCI-E 8pin (6+2)

Liczba złączy zasilania PCI-E w formacie 8 pin (6+2) przewidziana w konstrukcji zasilacza.

Dodatkowe złącza zasilania PCI-E (wszystkie formaty) służą do dodatkowego zasilania tych typów wewnętrznych urządzeń peryferyjnych, którym już nie wystarcza 75 W, zasilanych bezpośrednio przez gniazdo PCI-E na płycie głównej (typowym przykładem są karty graficzne). W akcesoriach do komputerów osobistych występują dwa rodzaje takich złączy – 6 pin, który zapewnia do 75 W dodatkowej mocy, oraz 8 pin, który zapewnia do 150 W. A wtyczki 8 pin (6+2) stosowane w zasilaczach są uniwersalne: mogą współpracować zarówno ze złączami 6-pinowymi, jak i 8-pinowymi na płycie rozszerzeń. Dlatego ten rodzaj wtyczki jest najpopularniejszy we współczesnych zasilaczach.

Jeśli chodzi o liczbę, w sprzedaży można znaleźć modele na 1 złącze PCI-E 8 pin (6+2), na 2 takie złącza, na 4 złącza, a w niektórych przypadkach na 6 i więcej. Kilka z tych wtyczek może być przydatnych na przykład podczas podłączania kilku kart graficznych lub w przypadku potężnej karty graficznej o wysokiej wydajności wyposażonej w kilka dodatkowych złączy zasilania PCI-E.

Okablowanie

Okablowanie zastosowane w zasilaczu.Według tego parametru rozróżnia się urządzenia modularne, częściowo modularne i niemodularne, oto ich cechy:

- Niemodularne. Klasyczna wersja konstrukcji, która od samego początku stosowana była w zasilaczach komputerowych i do dziś nie traci na popularności. Przewody w takim okablowaniu mają nieusuwalną konstrukcję, a podłączenie dodatkowych kabli nie jest przewidziane. W efekcie użytkownik ma do czynienia tylko z kablami dostarczonymi przez producenta, bez możliwości ich usunięcia lub wymiany (jedyne dostępne modyfikacje to montaż dodatkowych akcesoriów, takich jak przedłużacz czy rozgałęźnik). Z tego powodu takie zasilacze są mniej wygodne niż modularne i częściowo modularne: ich przewody są często nadmiernie długie, a część z nich w ogóle nie jest używana, a taka „ekonomia” dodatkowo zaśmieca obudowę, utrudniając cyrkulację powietrza i wydajność chłodzenia. Wady te jednak można zredukować prawie do zera dzięki starannemu doborowi zasilaczy i starannemu okablowaniu; i same w sobie systemy niemodularne są niezawodne i jednocześnie tanie. To właśnie dzięki tym cechom są one w naszych czasach najczęściej spotykane.

- Modularne. Systemy, w których każdy kabel jest odpinany; do mocowania przewodów służą specjalne gniazda. Dzięki tej konstrukcji można optymalnie zorganizować przestrzeń wewnątrz komputera - na przykład usunąć niepotrzebne przewody, aby nie...zakłócały cyrkulacji powietrza w jednostce systemowej; zamienić zbyt długi kabel na krótszy (lub odwrotnie); zamienić kable itp. Jednocześnie okablowanie modularne jest znacznie droższe niż niemodularne, podczas gdy jest uważane za nieco mniej niezawodne ze względu na obecność „słabych punktów” w postaci wyjmowanych uchwytów kablowych.

- Częściowo modularne. Swego rodzaju kompromis między opisanymi powyżej opcjami: część przewodów w takich zasilaczach jest nieusuwalna, część wyposażona jest w mocowania modularne. Pozwala to częściowo połączyć zalety i zrekompensować wady obu systemów: zasilacze półmodularne są tańsze i bardziej niezawodne niż modularne, a jednocześnie wygodniejsze niż niemodularne. Z reguły w systemach tego typu konstrukcję nieusuwalną mają najważniejsze przewody, które praktycznie na pewno są używane podczas montażu komputera, a kable wtórne są wyposażone w zdejmowane łączniki i można je usunąć w razie potrzeby. Jednak konkretne cechy zasilacza częściowo modularnego należy wyjaśnić osobno.

Przewody w oplocie

Przewody jednostki systemowej z zestawu - wszystkie lub przynajmniej niektóre - posiadają oplot.

Ta cecha ma pozytywny wpływ na niezawodność, czyniąc przewód tak odpornym na załamania, ścieranie, silny nacisk i inne podobne czynniki, jak to tylko możliwe; zapewnia również dodatkową ochronę przed przypadkowym kontaktem z ostrymi przedmiotami (na przykład podczas naprawy komputera). Wadami przewodów w oplocie, oprócz zwiększonego kosztu, są również zwiększona grubość i większa sztywność niż w przypadku podobnych kabli w konwencjonalnej izolacji. Może to powodować pewne trudności podczas organizowania przestrzeni wewnątrz jednostki systemowej.
Dynamika cen
Zalman GigaMax GV II często porównują
Corsair TX-M Series często porównują