Polska
Katalog   /   Dom i remont   /   Zasilanie awaryjne   /   Agregaty prądotwórcze

Porównanie Honda EU22i vs Yanmar YDG2700N-5B2

Dodaj do porównania
Honda EU22i
Yanmar YDG2700N-5B2
Honda EU22iYanmar YDG2700N-5B2
Porównaj ceny 2Produkt jest niedostępny
TOP sprzedawcy
Główne
Alternator z falownikiem. Złącza równoległe. Dwa gniazda 230 V. Szybki dostęp do świecy.
Paliwobenzynadiesel
Napięcie wyjściowe230 B230 B
Moc znamionowa1.8 kW2 kW
Moc maksymalna2.2 kW2.2 kW
Alternator (prądnica)inwerterowysynchroniczny
Silnik
Rodzaj silnika spalinowego4-suwowy4-suwowy
Model silnikaHonda GXR120Yanmar L48N5/6-GY
Pojemność silnika121 cm³219 cm³
Moc3.6 KM4.7 KM
Rodzaj rozruchuręcznyręczny
Zużycie paliwa (obciążenie 50%)1.03 l/h
Pojemność zbiornika paliwa3.6 l7.2 l
Wskaźnik poziomu paliwa
Chłodzenie silnikapowietrzepowietrze
Podłączenie (gniazda)
Łączna liczba gniazd2 szt.2 szt.
Gniazda 230 V2 szt. na 16 A
Wyjście 12 Vgniazdo
Funkcje i możliwości
Funkcje
 
 
połączenie równoległe
automatyczny regulator napięcia (AVR)
woltomierz
 
Dane ogólne
Dźwiękochłonna obudowa
Poziom ochronyIP 23
Poziom hałasu89 dB
79 dB /w odległości 7 m/
Wymiary509x290x425 mm590x416x500 mm
Waga21.1 kg55 kg
Data dodania do E-Katalogwrzesień 2018październik 2015

Paliwo

Rodzaj paliwa, na którym pracuje silnik generatora prądu.

Benzyna. Jeden z głównych rodzajów paliw do silników spalinowych. Generatory benzynowe są zwykle tańsze niż generatory z silnikiem Diesel, przy pozostałych warunkach równych, ale są droższe w eksploatacji ze względu na wyższą cenę benzyny; ponadto mają zwykle krótszą żywotność niż z silnikiem Diesel. Dlatego uważa się, że generatory benzynowe dobrze nadają się przede wszystkim jako zapasowe źródło zasilania w przypadku przerw w dostawie prądu.

Diesel. Generatory z silnikiem Diesel są zwykle droższe niż generatory benzynowe; z drugiej strony olej napędowy jest tańszy niż benzyna, więc zwiększony koszt może się zwrócić przy regularnym użytkowaniu. Ponadto generatory dieslowskie mają dłuższą żywotność i większy zakres mocy niż generatory benzynowe. Dzięki temu mogą być używane zarówno jako zapasowe, jak i główne źródła zasilania, w tym w obiektach dość „energochłonnych”.

Gaz. Zaletami generatorów gazowych jest ich stosunkowo niski poziom hałasu oraz niewielka ilość szkodliwych emisji. Stosowanie gazu jako paliwa wiąże się z pewnymi trudnościami: konieczne jest podłączenie do sieci gazowej lub regularna wymiana specjalnych butli, układ paliwowy jest szczególnie wrażliwy na wycieki itp. Dlatego produkuje się stosunkowo niewiele takich modeli, a większość z nich to stacjonarne generatory o...dużej mocy, w których wspomniane wady są kompensowane zaletami.

Benzyna/gaz. Modele zdolne do korzystania z obu tych paliw. Daje to użytkownikowi możliwość wyboru opcji, która najlepiej pasuje do konkretnej sytuacji, a także zmniejsza prawdopodobieństwo pozostawienia bez paliwa w najbardziej nieodpowiednim momencie; przy tym podobne modele są droższe od jednopaliwowych. Parametry techniczne benzyny i gazu zostały szczegółowo opisane powyżej.

Moc znamionowa

Moc znamionowa generatora to najwyższa moc, jaką agregat jest w stanie bezproblemowo dostarczać przez nieograniczony czas. W „najsłabszych” modelach liczba ta wynosi mniej niż 1 kW, w najmocniejszych — 50 — 100 kW, a nawet więcej; generatory z modułem spawalniczym (patrz poniżej) mają zwykle moc znamionową od 1 — 2 kW do 8 — 10 kW.

Główna zasada wyboru w tym przypadku jest następująca: moc znamionowa nie może być niższa niż całkowity pobór mocy całego podłączonego obciążenia. W przeciwnym razie generator po prostu nie będzie w stanie zapewnić wystarczającej ilości energii lub będzie działał z przeciążeniami. Jednak, aby wyjaśniać minimalną wymaganą moc generatora, nie wystarczy po prostu dodać liczbę watów wskazaną w charakterystyce każdego podłączonego urządzenia — metoda obliczeniowa jest nieco bardziej skomplikowana. Po pierwsze, należy pamiętać, że w watach zwykle wskazuje się tylko moc czynną różnych urządzeń; ponadto wiele urządzeń elektrycznych prądu przemiennego zużywa moc bierną („bezużyteczną” moc zużywaną przez cewki i kondensatory podczas pracy z tym prądem). Rzeczywiste obciążenie generatora zależy dokładnie od całkowitej mocy (czynnej i biernej), wskazywanej w woltoamperach. Do jej obliczania istnieją specjalne współczynniki i formuły.

Drugi niuans związany jest z zasilaniem ur...ządzeń, w których prąd rozruchowy (i odpowiednio pobór mocy w momencie włączenia) jest znacznie wyższy niż nominalny — głównie są to urządzenia z silnikami elektrycznymi, takie jak odkurzacze , lodówki, klimatyzatory, elektronarzędzia itp. Moc rozruchową można określić mnożąc moc znamionową przez tzw. współczynnik rozruchu. Dla urządzeń jednego typu jest on mniej więcej taki sam — np. 1,2 — 1,3 dla większości elektronarzędzi, 2 dla mikrofalówki, 3,5 dla klimatyzatora itp.; bardziej szczegółowe dane dostępne są w dedykowanych źródłach. Charakterystyki rozruchowe obciążenia są niezbędne przede wszystkim do oceny wymaganej maksymalnej mocy generatora (patrz niżej) — jednak moc ta nie zawsze jest podana w charakterystyce, często producent podaje tylko moc znamionową agregata. W takich przypadkach przy obliczaniu dla urządzeń o współczynniku rozruchu większym niż 1 warto zastosować moc rozruchową, a nie moc znamionową.

Należy również pamiętać, że w przypadku kilku gniazd określony podział całkowitej mocy na nie może być różny. Ten punkt należy doprecyzować osobno — w szczególności dla określonych typów gniazd (więcej szczegółów patrz „Gniazd 230 V”, „Gniazd 400 V”).

Alternator (prądnica)

Rodzaj alternatora (prądnicy) zainstalowanego w agregacie.

Alternator jest częścią generatora, która jest bezpośrednio odpowiedzialna za wytwarzanie energii elektrycznej. Taki system działa na zasadzie ruchu przewodów (cewek) w polu magnetycznym, dzięki czemu generowany jest prąd elektryczny. Jednak cechy alternatora mogą być różne, na podstawie których dzieli się je na typy: asynchroniczne, synchroniczne, inwerterowe i Duplex. Oto główne cechy każdej opcji:

— Asynchroniczny. Najprostsza wersja alternatora. Wirnik (część obrotowa) w takich modelach, gdy się obraca, nieco wyprzedza ruch pola magnetycznego wytwarzanego przez stojan (część nieruchomą) — stąd nazwa. Praktyczne zalety alternatorów asynchronicznych to prostota, niski koszt, dobra ochrona przed wpływami zewnętrznymi oraz niewrażliwość na zwarcia i długotrwałe przeciążenia. Ta ostatnia cecha czyni je optymalnym wyborem do zasilania spawarek. Ogólnie rzecz biorąc, generatory asynchroniczne są przeznaczone głównie do obciążeń aktywnych: urządzeń oświetleniowych, komputerów, grzałek elektrycznych itp. W przypadku obciążeń biernych (z cewkami i kondensatorami) lepiej jest stosować urządzenia synchroniczne (patrz poniżej). Warto również zauważyć, że w alternatorze asynchronicznym napięcie i częstotliwość prądu wyjściowego zależą bezpośrednio od prędkości obrotowej; dla...tego takie urządzenia są szczególnie wymagające pod względem stabilności silnika napędowego.

— Synchroniczny. W tego typu alternatorach obroty wirnika i pola magnetycznego stojana się pokrywają (w przeciwieństwie do modeli asynchronicznych). Generatory synchroniczne są nieco bardziej złożone w konstrukcji i droższe, są bardziej wrażliwe na zwarcia i długotrwałe przeciążenia. Z drugiej strony takie urządzenie doskonale radzi sobie zarówno z obciążeniami czynnymi, jak i biernymi: przez krótki czas jest w stanie dostarczyć prąd wielokrotnie wyższy niż znamionowy, zapewniając tym samym niezbędny prąd rozruchowy dla obciążenia biernego. Ponadto konstrukcja generatorów synchronicznych obejmuje automatyczny regulator, który wytwarza stabilne napięcie i jest w stanie w pewnym stopniu skompensować wahania prędkości silnika napędowego. Jednak pod względem stabilności napięcia modele synchroniczne są nadal gorsze od modeli inwerterowych (patrz poniżej).

— Inwerterowy. Generator synchroniczny (patrz wyżej), wyposażony w dodatkową jednostkę elektroniczną — falownik. Jednostka ta zapewnia podwójną konwersję prądu: z AC na DC i z powrotem na AC. Takie urządzenia nie są tanie, ale jednocześnie mają szereg zalet. Po pierwsze, na wyjściu uzyskuje się bardzo stabilny prąd, praktycznie bez przepięć i wahań. Po drugie, generator jest w stanie regulować pracę silnika w zależności od obciążenia: na przykład, jeśli obciążenie wynosi połowę mocy wyjściowej, aktualna moc silnika zmniejsza się o połowę; skutkuje to znaczną oszczędnością paliwa. Po trzecie, modele inwerterowe są lżejsze i bardziej kompaktowe niż tradycyjne generatory i są mniej hałaśliwe. Jest to taki generator, który jest uważany za najlepszy wybór dla obciążenia wrażliwego na jakość prądu, takiego jak sprzęt audio czy telewizor. Jednocześnie urządzenia tego typu charakteryzują się stosunkowo małą mocą i nie są przeznaczone do długotrwałej pracy ani dużych obciążeń rozruchowych, w związku z czym są wykorzystywane jedynie jako rezerwowe źródła zasilania dla układów o stosunkowo małej mocy. Ponadto przy wyborze generatora inwerterowego warto doprecyzować kształt przebiegu sinusoidy: nie wszystkie modele dają idealną sinusoidę – są też agregaty z impulsem trapezowym, które nie nadają się do delikatnych urządzeń.

— Duplex. Rodzaj alternatorów opracowany przez firmę Endress i stosowany głównie w generatorach tej marki (choć są też urządzenia innych producentów). Według twórców taki alternator łączy w sobie zalety modeli synchronicznych i asynchronicznych. Tak więc, z jednej strony, jest w stanie wytrzymać wysokie prądy rozruchowe bez uszczerbku dla zasilania innych odbiorców, a konstrukcja zwykle ma automatyczny regulator napięcia wyjściowego; z drugiej strony — większość z tych generatorów może być również wykorzystywana do zasilania spawarek, a liczba harmonicznych o wysokiej częstotliwości na wyjściu jest bardzo niska. Wady „dupleksów”, oprócz wysokich kosztów, obejmują konieczność konfiguracji pod konkretny zestaw podłączonych urządzeń.

Model silnika

Nazwa modelu silnika zainstalowanego w generatorze. Znając tę nazwę, możesz w razie potrzeby znaleźć szczegółowe dane dotyczące silnika i wyjaśnić, w jaki sposób spełnia on Twoje wymagania. Ponadto dane modelu mogą być potrzebne do niektórych określonych zadań, w tym konserwacji i napraw.

Należy pamiętać, że współczesne generatory są często wyposażone w markowe silniki renomowanych producentów: Honda, John Deere, Mitsubishi, Volvo itp. Takie silniki są droższe niż podobne urządzenia mało znanych marek, ale rekompensuje to wyższa jakość i/lub solidność warunków gwarancji, a w wielu przypadkach także łatwość odnalezienia części zamiennych i dodatkowej dokumentacji (takiej jak instrukcje obsługi specjalnej i drobnych napraw).

Pojemność silnika

Pojemność silnika w generatorze benzynowym lub dieslowskim (patrz „Paliwo”). W teorii większa pojemność zwykle oznacza większą moc, ale w praktyce nie jest to takie proste. Po pierwsze, moc właściwa silnie zależy od rodzaju paliwa, a w urządzeniach benzynowych także od rodzaju silnika spalinowego (patrz wyżej). Po drugie, podobne silniki o tej samej mocy mogą mieć różne pojemności i tutaj jest praktyczny punkt: przy tej samej mocy większy silnik zużywa więcej paliwa, ale sam może być tańszy.

Moc

Moc robocza silnika zainstalowanego w generatorze. Tradycyjnie wskazywana jest w koniach mechanicznych; 1 KM w przybliżeniu równa się 735 W.

Od tego wskaźnika zależy bezpośrednio przede wszystkim moc znamionowa generatora (patrz wyżej): w zasadzie nie może być wyższa niż moc silnika, ponadto część mocy silnika jest zużywana na ciepło, tarcie i inne straty. Im mniejsza różnica między tymi mocami, tym wyższa sprawność generatora i tym on jest oszczędniejszy. Co prawda, wysoka sprawność wpływa na koszt, ale ta różnica może się opłacić przy regularnym użytkowaniu ze względu na oszczędność paliwa.

Zużycie paliwa (obciążenie 50%)

Zużycie paliwa przez generator benzynowy lub wysokoprężny, a w przypadku modeli kombinowanych — przy zasilaniu benzyną (patrz "Paliwo").

Mocniejszy silnik nieuchronnie oznacza większe zużycie paliwa; jednak modele o tej samej mocy silnika mogą się pod tym względem różnić. W takich przypadkach warto wziąć pod uwagę, że model o mniejszym zużyciu zazwyczaj kosztuje więcej, ale ta różnica może dość szybko się zwrócić, zwłaszcza przy regularnym użytkowaniu. Ponadto, znając zużycie paliwa i pojemność zbiornika, możesz określić, na jak długo wystarczy jedno tankowanie; jednak w modelach inwerterowych przy częściowym obciążeniu rzeczywisty czas pracy może okazać się zauważalnie wyższy niż teoretyczny, aby uzyskać więcej szczegółów szczegółów patrz „Alternator (prądnica)”.

Pojemność zbiornika paliwa

Pojemność zbiornika paliwa zainstalowanego w generatorze.

Znając zużycie paliwa (patrz wyżej) i pojemność zbiornika można obliczyć czas pracy przy jednym tankowaniu (jeśli nie jest to podane w specyfikacji). Jednak pojemniejszy zbiornik okazuje się bardziej nieporęczny. Dlatego producenci wybierają zbiorniki w oparciu o ogólny poziom i „obżarstwo” generatora — w celu zapewnienia akceptowalnego czasu pracy bez znacznego wzrostu rozmiarów i wagi. Tak więc, ogólnie rzecz biorąc, parametr ten ma raczej charakter odniesienia niż praktycznego znaczenia.

Jeśli chodzi o liczby, to w modelach o małej mocy instalowane są zbiorniki o pojemności 5 – 10 l, a nawet mniej; w ciężkim sprzęcie profesjonalnym wskaźnik ten może przekroczyć 50 l.

Wskaźnik poziomu paliwa

Wskaźnik, który pozwala monitorować pozostałe paliwo w zbiorniku generatora. Najprostsze takie wskaźniki są uruchamiane tylko wtedy, gdy poziom paliwa spadnie krytycznie, ostrzegając o konieczności tankowania; bardziej zaawansowane stale wyświetlają poziom pozostałego paliwa. Jednak w każdym przypadku funkcja ta ułatwia monitorowanie dopływu paliwa i zmniejsza ryzyko zatrzymania generatora z powodu zapomnienia o zatankowaniu.
Dynamika cen
Honda EU22i często porównują