Темна версія
Польща
Каталог   /   Комп'ютерна техніка   /   Комплектуючі   /   Системи охолодження

Порівняння Thermaltake Pure 20 ARGB Sync Case Fan TT Premium vs Noctua NF-A20 PWM

Додати до порівняння
Thermaltake Pure 20 ARGB Sync Case Fan TT Premium
Noctua NF-A20 PWM
Thermaltake Pure 20 ARGB Sync Case Fan TT PremiumNoctua NF-A20 PWM
Порівняти ціни 2Порівняти ціни 9
Відгуки
1
0
0
0
ТОП продавці
Головне
Призначенняу корпусу корпус
Типвентиляторвентилятор
Вентилятор
Кількість вентиляторів1 шт1 шт
Діаметр вентилятора200 мм200 мм
Товщина вентилятора30 мм30 мм
Тип підшипникагідродинамічниймагнітне центрування
Мінімальні оберти500 об/хв
Максимальні оберти1000 об/хв800 об/хв
Регулятор обертівавто (PWM)авто (PWM)
Макс. повітряний потік129.54 CFM86 CFM
Статичний тиск1.72 мм H2O
Напрацювання на відмову40 тис. год150 тис. год
Стартова напруга9 В
Рівень шуму31 дБ18 дБ
Джерело живлення4-pin4-pin
Інше
Підсвічування
Колір підсвічуванняARGB
Синхронізація підсвічуванняmulti compatibility
Тип кріпленняболтиболти
Габарити200x200x30 мм200x200x30 мм
Дата додавання на E-Katalogберезень 2020лютий 2019

Тип підшипника

Тип підшипника, що використовується у вентиляторі (вентиляторах) системи охолодження.

Підшипник – це деталь між віссю вентилятора, що обертається, і нерухомою основою, яка підтримує вісь і знижує тертя. У сучасних вентиляторах зустрічаються такі типи підшипників:

Ковзання. Дія таких підшипників заснована на прямому контакті між двома суцільними поверхнями, ретельно відполірованими для зниження тертя. Подібні пристосування прості, надійні і довговічні, проте ефективність їх досить невисока — кочення, а тим більше гідродинамічний і магнітний принцип роботи (див. нижче) забезпечують значно менше тертя.

Кочення. Також називаються «кульковими підшипниками» оскільки «посередниками» між віссю обертання і нерухомою основою є кульки (рідше — циліндричні ролики), закріплені в спеціальному кільці. При обертанні осі такі кульки котяться між нею і основою, за рахунок чого сила тертя виходить дуже невисокою — помітно нижче, ніж в підшипниках ковзання. З іншого боку, конструкція виходить дорожчою і складнішою, а за надійністю вона дещо поступається як тим же підшипникам ковзання, так і більш прогресивним гідродинамічним пристосуванням (див. нижче). Тому, хоча підшипники кочення в наш час досить широко поширені, проте в цілому вони зустрічаються помітно рідше згаданих різновидів.

Гідродинамічний. Підшипники цього типу заповнені спец...іальною рідиною; при обертанні вона створює прошарок, по якому ковзає рухома частина підшипника. Таким чином вдається уникнути безпосереднього контакту між твердими поверхнями і значно знизити тертя в порівнянні з попередніми типами. Також такі підшипники тихо працюють і вельми надійні. З їх недоліків можна відзначити порівняно високу вартість, проте на практиці цей момент нерідко виявляється непомітним на тлі ціни всієї системи. Тому даний варіант в наш час надзвичайно популярний, його можна зустріти в системах охолодження всіх рівнів — від бюджетних до прогресивних.

Магнітне центрування. Підшипники, засновані на принципі магнітної левітації: вісь, що обертається, «підвішена» в магнітному полі. Таким чином вдається (як і в гідродинамічних) уникнути контакту між твердими поверхнями і ще більше знизити тертя. Вважаються найбільш прогресивним типом підшипників, надійні і безшумні, проте коштують дорого.

Мінімальні оберти

Найменші оберти, на яких здатний працювати вентилятор системи охолодження. Вказуються тільки для моделей, що мають регулятор оборотів (див. нижче).

Чим нижче мінімальні оберти (при тому ж максимумі) — тим ширше діапазон регулювання швидкості і тим сильніше можна уповільнити вентилятор, коли висока продуктивність не потрібна (таке уповільнення дозволяє знизити споживання енергії і рівень шуму). З іншого боку, великий діапазон відповідним чином позначається на вартості.

Максимальні оберти

Найбільші оберти, на яких здатен працювати вентилятор системи охолодження; для моделей без регулятора обертів (див. нижче) у цьому пункті зазначається штатна швидкість обертання. У найбільш «повільних» сучасних вентиляторах максимальна швидкість не перевищує 1000 об/хв, в самих «швидких» може становити до 2500 об/хв і навіть більше .

Відзначимо, що даний параметр щільно пов'язаний з діаметром вентилятора (див. вище): чим менше діаметр, тим вище повинні бути оберти для досягнення потрібних значень повітряного потоку. При цьому швидкість обертання безпосередньо впливає на рівень шуму і вібрацій. Тому вважається, що потрібний об'єм повітря найкраще забезпечувати великими і порівняно «повільними» вентиляторами; а «швидкі» невеликі моделі має сенс застосовувати там, де компактність має вирішальне значення. Якщо ж порівнювати по швидкості моделі однакового розміру, то більш високі оберти позитивно позначаються на продуктивності, проте підвищують не тільки рівень шуму, а також ціну та енергоспоживання.

Макс. повітряний потік

Максимальний повітряний потік, що може створити вентилятор системи охолодження; вимірюється в CFM - кубічних футах за хвилину.

Чим вище кількість CFM - тим ефективніший вентилятор. З іншого боку, висока продуктивність вимагає або великого діаметра (що позначається на габаритах та вартості), або високої швидкості (а вона підвищує рівень шуму та вібрацій). Тому при виборі має сенс не гнатися за максимальним повітряним потоком, а скористатися спеціальними формулами, що дозволяють розрахувати необхідне кількість CFM залежно від типу та потужності компонента, що охолоджується, та інших параметрів. Такі формули можна знайти у спеціальних джерелах. Що ж до конкретних чисел, то найбільш скромних системах продуктивність вбирається у 30 CFM, а найбільш потужних може становити понад 80 CFM.

Також варто враховувати, що фактичне значення повітряного потоку на найбільших оборотах зазвичай нижче за заявлений максимальний; докладніше див. «Статичний тиск».

Статичний тиск

Максимальне статичний тиск повітря, що створюється вентилятором під час роботи.

Даний параметр вимірюється наступним чином: якщо вентилятор встановити на глухий трубі, звідки немає виходу повітря, і включити на вдув, то досягнуте в трубі тиск і буде відповідати статичного. На практиці цей параметр визначає загальну ефективність роботи вентилятора: чим вище статичний тиск (за інших рівних умов) — тим простіше вентилятору «проштовхнути» потрібний об'єм повітря через простір з високим опором, наприклад, через вузькі прорізи радіатора або через набитий комплектуючими корпус.

Також даний параметр використовується при деяких специфічних обчисленнях, однак ці обчислення доволі складні і рядовому користувачеві, зазвичай, не потрібні — вони пов'язані з нюансами, актуальними переважно для ентузіастів-комп'ютерників. Детальніше про це можна прочитати в спеціальних джерелах.

Напрацювання на відмову

Загальний час, який вентилятор системи охолодження здатний гарантовано пропрацювати до виходу з ладу. Зазначимо, що при вичерпанні цього часу пристрій не обов'язково зламається — зазвичай сучасні вентилятори мають значний запас міцності і здатні пропрацювати ще якийсь період. Водночас оцінювати загальну довговічність системи охолодження варто саме за цим параметром.

Стартова напруга

Стартова напруга вентилятора, встановленого в системі охолодження. Фактично це найменше значення, необхідне для стабільної роботи вентилятора — при дуже низькій напрузі він просто «не заведеться». Відзначимо, що даний параметр актуальне переважно для досить специфічних завдань — наприклад, встановлення вентилятора блоку живлення, з підключенням до БЖ безпосередньо, або вибору зовнішнього контролера для регулювання швидкості обертання. При підключенні через стандартні роз'єми живлення на стартову напругу можна не звертати особливої уваги.

Рівень шуму

Стандартний рівень шуму, створюваного системою охолодження під час роботи. Зазвичай в цьому пункті вказується максимальний шум при штатному режимі роботи, без перевантажень і іншого «екстриму».

Відзначимо, що рівень шуму позначається в децибелах, а це нелінійна величина. Так що оцінювати фактичну гучність простіше всього по порівняльних таблиць. Ось така таблиця для значень, що зустрічаються в сучасних системах охолодження:

20 дБ — ледь чутний звук (тихий шепіт людини на відстані близько 1 м, звуковий фон на відкритому полі за містом в безвітряну погоду);
25 дБ — дуже тихо (звичайний шепіт на відстані 1 м);
30 дБ — тихо (настінний годинник). Саме такий шум за санітарними нормами є максимально допустимим для постійних джерел звуку в нічний час (з 23.00 до 7.00). Це означає, що якщо комп'ютером планується сидіти вночі — бажано, щоб гучність системи охолодження не перевищувала даного значення.
35 дБ — розмова упівголоса, звуковий фон в тихій бібліотеці;
40 дБ — розмова, порівняно неголосна, але вже в повний голос. Максимально допустимий за санітарними нормами рівень шуму для житлових приміщень в денний час, з 7.00 до 23.00. Втім, навіть найбільш галасливі системи охолодження зазвичай не дотягують до цього показника, максимум для подібної техніки становить близько 38 – 39 дБ.

Підсвічування

Наявність власного підсвічування в конструкції системи охолодження.

Підсвічування виконує чисто естетичну функцію – воно надає пристрою стильного зовнішнього вигляду, що добре поєднується з іншими компонентами в оригінальному дизайні. Завдяки цьому подібні системи охолодження особливо цінуються геймерами і любителями зовнішнього моддингу ПК — тим більше що колір освітлення може бути різним, а в найбільш прогресивних моделях навіть передбачається синхронізація підсвічування з іншими компонентами (див. нижче). З іншого боку, на ефективність і робочі характеристики дана функція не впливає, а на загальній вартості — неминуче позначається, іноді досить помітно. Тому, якщо зовнішній вигляд не грає для вас принципової ролі – оптимальним вибором, швидше за все, стане система охолодження без підсвічування.
Динаміка цін
Noctua NF-A20 PWM часто порівнюють