Польща
Каталог   /   Комп'ютерна техніка   /   Комплектуючі   /   Системи охолодження

Порівняння NZXT Kraken X63 vs Gigabyte AORUS Liquid Cooler 280

Додати до порівняння
NZXT Kraken X63
Gigabyte AORUS Liquid Cooler 280
NZXT Kraken X63Gigabyte AORUS Liquid Cooler 280
від 622 zł
Очікується у продажу
від 570 zł
Товар застарів
ТОП продавці
Головне
Призначеннядля процесорадля процесора
Типводяне охолодженняводяне охолодження
Вентилятор
Кількість вентиляторів2 шт2 шт
Діаметр вентилятора140 мм140 мм
Тип підшипникагідродинамічнийкочення
Мінімальні оберти500 об/хв
Максимальні оберти1800 об/хв2300 об/хв
Регулятор обертівавто (PWM)авто (PWM)
Макс. повітряний потік98.17 CFM100.16 CFM
Статичний тиск2.71 мм H2O5.16 мм H2O
Напрацювання на відмову60 тис. год70 тис. год
Можливість заміни
Мін. рівень шуму21 дБ22 дБ
Рівень шуму38 дБ44 дБ
Джерело живлення4-pin4-pin
Радіатор
Матеріал радіатораалюмінійалюміній
Матеріал підкладкимідь
Socket
AMD AM4
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM4
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Система рідинного охолодження
Розмір радіатора280 мм280 мм
Розмір помпи80x80x55 мм80x80x60 мм
Швидкість обертання помпи2800 об/хв
Довжина трубки400 мм
Джерело живлення помпи4-pinSATA
Інше
Підсвічування
Колір підсвічуванняRGBARGB
Синхронізація підсвічуванняNZXT CAMGigabyte RGB Fusion
Тип кріпленнядвосторонній (backplate)двосторонній (backplate)
Гарантія виробника6 років
Габарити315x143x30 мм
315x143x30 мм /радіатора/
Вага2090 г
Дата додавання на E-Katalogсічень 2020грудень 2019

Тип підшипника

Тип підшипника, що використовується у вентиляторі (вентиляторах) системи охолодження.

Підшипник – це деталь між віссю вентилятора, що обертається, і нерухомою основою, яка підтримує вісь і знижує тертя. У сучасних вентиляторах зустрічаються такі типи підшипників:

Ковзання. Дія таких підшипників заснована на прямому контакті між двома суцільними поверхнями, ретельно відполірованими для зниження тертя. Подібні пристосування прості, надійні і довговічні, проте ефективність їх досить невисока — кочення, а тим більше гідродинамічний і магнітний принцип роботи (див. нижче) забезпечують значно менше тертя.

Кочення. Також називаються «кульковими підшипниками» оскільки «посередниками» між віссю обертання і нерухомою основою є кульки (рідше — циліндричні ролики), закріплені в спеціальному кільці. При обертанні осі такі кульки котяться між нею і основою, за рахунок чого сила тертя виходить дуже невисокою — помітно нижче, ніж в підшипниках ковзання. З іншого боку, конструкція виходить дорожчою і складнішою, а за надійністю вона дещо поступається як тим же підшипникам ковзання, так і більш прогресивним гідродинамічним пристосуванням (див. нижче). Тому, хоча підшипники кочення в наш час досить широко поширені, проте в цілому вони зустрічаються помітно рідше згаданих різновидів.

Гідродинамічний. Підшипники цього типу заповнені спец...іальною рідиною; при обертанні вона створює прошарок, по якому ковзає рухома частина підшипника. Таким чином вдається уникнути безпосереднього контакту між твердими поверхнями і значно знизити тертя в порівнянні з попередніми типами. Також такі підшипники тихо працюють і вельми надійні. З їх недоліків можна відзначити порівняно високу вартість, проте на практиці цей момент нерідко виявляється непомітним на тлі ціни всієї системи. Тому даний варіант в наш час надзвичайно популярний, його можна зустріти в системах охолодження всіх рівнів — від бюджетних до прогресивних.

Магнітне центрування. Підшипники, засновані на принципі магнітної левітації: вісь, що обертається, «підвішена» в магнітному полі. Таким чином вдається (як і в гідродинамічних) уникнути контакту між твердими поверхнями і ще більше знизити тертя. Вважаються найбільш прогресивним типом підшипників, надійні і безшумні, проте коштують дорого.

Мінімальні оберти

Найменші оберти, на яких здатний працювати вентилятор системи охолодження. Вказуються тільки для моделей, що мають регулятор оборотів (див. нижче).

Чим нижче мінімальні оберти (при тому ж максимумі) — тим ширше діапазон регулювання швидкості і тим сильніше можна уповільнити вентилятор, коли висока продуктивність не потрібна (таке уповільнення дозволяє знизити споживання енергії і рівень шуму). З іншого боку, великий діапазон відповідним чином позначається на вартості.

Максимальні оберти

Найбільші оберти, на яких здатен працювати вентилятор системи охолодження; для моделей без регулятора обертів (див. нижче) у цьому пункті зазначається штатна швидкість обертання. У найбільш «повільних» сучасних вентиляторах максимальна швидкість не перевищує 1000 об/хв, в самих «швидких» може становити до 2500 об/хв і навіть більше .

Відзначимо, що даний параметр щільно пов'язаний з діаметром вентилятора (див. вище): чим менше діаметр, тим вище повинні бути оберти для досягнення потрібних значень повітряного потоку. При цьому швидкість обертання безпосередньо впливає на рівень шуму і вібрацій. Тому вважається, що потрібний об'єм повітря найкраще забезпечувати великими і порівняно «повільними» вентиляторами; а «швидкі» невеликі моделі має сенс застосовувати там, де компактність має вирішальне значення. Якщо ж порівнювати по швидкості моделі однакового розміру, то більш високі оберти позитивно позначаються на продуктивності, проте підвищують не тільки рівень шуму, а також ціну та енергоспоживання.

Макс. повітряний потік

Максимальний повітряний потік, що може створити вентилятор системи охолодження; вимірюється в CFM - кубічних футах за хвилину.

Чим вище кількість CFM - тим ефективніший вентилятор. З іншого боку, висока продуктивність вимагає або великого діаметра (що позначається на габаритах та вартості), або високої швидкості (а вона підвищує рівень шуму та вібрацій). Тому при виборі має сенс не гнатися за максимальним повітряним потоком, а скористатися спеціальними формулами, що дозволяють розрахувати необхідне кількість CFM залежно від типу та потужності компонента, що охолоджується, та інших параметрів. Такі формули можна знайти у спеціальних джерелах. Що ж до конкретних чисел, то найбільш скромних системах продуктивність вбирається у 30 CFM, а найбільш потужних може становити понад 80 CFM.

Також варто враховувати, що фактичне значення повітряного потоку на найбільших оборотах зазвичай нижче за заявлений максимальний; докладніше див. «Статичний тиск».

Статичний тиск

Максимальне статичний тиск повітря, що створюється вентилятором під час роботи.

Даний параметр вимірюється наступним чином: якщо вентилятор встановити на глухий трубі, звідки немає виходу повітря, і включити на вдув, то досягнуте в трубі тиск і буде відповідати статичного. На практиці цей параметр визначає загальну ефективність роботи вентилятора: чим вище статичний тиск (за інших рівних умов) — тим простіше вентилятору «проштовхнути» потрібний об'єм повітря через простір з високим опором, наприклад, через вузькі прорізи радіатора або через набитий комплектуючими корпус.

Також даний параметр використовується при деяких специфічних обчисленнях, однак ці обчислення доволі складні і рядовому користувачеві, зазвичай, не потрібні — вони пов'язані з нюансами, актуальними переважно для ентузіастів-комп'ютерників. Детальніше про це можна прочитати в спеціальних джерелах.

Напрацювання на відмову

Загальний час, який вентилятор системи охолодження здатний гарантовано пропрацювати до виходу з ладу. Зазначимо, що при вичерпанні цього часу пристрій не обов'язково зламається — зазвичай сучасні вентилятори мають значний запас міцності і здатні пропрацювати ще якийсь період. Водночас оцінювати загальну довговічність системи охолодження варто саме за цим параметром.

Мін. рівень шуму

Найменший рівень шуму, видаваний системою охолодження під час роботи.

Даний параметр вказується тільки для тих моделей, які мають можливість регулювання продуктивності і можуть працювати на зниженій потужності. Відповідно, мінімальний рівень шуму — це рівень шуму на «тихому» режимі, гучність роботи, менше якої у даній моделі бути не може.

Ці дані будуть корисні насамперед тим, хто намагається максимально знизити рівень шуму і, що називається, «бореться за кожен децибел». Проте тут варто відзначити, що в багатьох моделях мінімальні значення становлять близько 15 дБ, а в самих тихих — всього 10 – 11 дБ. Ця гучність порівнянна з шелестом листя і практично втрачається на тлі навколишнього шуму навіть у житловому приміщенні вночі, не кажучи вже про більш «гучних» умовах, причому різниця між 11 і 18 дБ в даному випадку не є скільки-небудь значимої для людського сприйняття. А порівняльна таблиця по звуку починаючи з 20 дБ наведена в п. «Рівень шуму» нижче.

Рівень шуму

Стандартний рівень шуму, створюваного системою охолодження під час роботи. Зазвичай в цьому пункті вказується максимальний шум при штатному режимі роботи, без перевантажень і іншого «екстриму».

Відзначимо, що рівень шуму позначається в децибелах, а це нелінійна величина. Так що оцінювати фактичну гучність простіше всього по порівняльних таблиць. Ось така таблиця для значень, що зустрічаються в сучасних системах охолодження:

20 дБ — ледь чутний звук (тихий шепіт людини на відстані близько 1 м, звуковий фон на відкритому полі за містом в безвітряну погоду);
25 дБ — дуже тихо (звичайний шепіт на відстані 1 м);
30 дБ — тихо (настінний годинник). Саме такий шум за санітарними нормами є максимально допустимим для постійних джерел звуку в нічний час (з 23.00 до 7.00). Це означає, що якщо комп'ютером планується сидіти вночі — бажано, щоб гучність системи охолодження не перевищувала даного значення.
35 дБ — розмова упівголоса, звуковий фон в тихій бібліотеці;
40 дБ — розмова, порівняно неголосна, але вже в повний голос. Максимально допустимий за санітарними нормами рівень шуму для житлових приміщень в денний час, з 7.00 до 23.00. Втім, навіть найбільш галасливі системи охолодження зазвичай не дотягують до цього показника, максимум для подібної техніки становить близько 38 – 39 дБ.

Матеріал підкладки

Матеріал, з якого виконана підкладка системи охолодження — поверхня, що безпосередньо контактує з охолоджуваним компонентом (найчастіше з процесором). Цей параметр особливо важливий для моделей з використанням теплових трубок (див. вище) , хоча він може вказуватися і для кулерів без цієї функції. Варіанти можуть бути такими: алюміній, нікельований алюміній, мідь, нікельована мідь. Детальніше про них.

— Алюміній. Традиційний, найбільш поширений матеріал підкладки. При відносно невисокій вартості алюміній має непогані характеристики теплопровідності, легко піддається шліфовці (необхідної для щільного прилягання) і добре протистоїть появі подряпин і інших нерівностей, а також корозії. Правда, за ефективністю тепловідведення цей матеріал все ж поступається міді — однак це стає помітно переважно в прогресивних системах, що вимагають максимально високої теплопровідності.

— Мідь. Мідь коштує помітно дорожче алюмінію, проте це компенсується більш високою теплопровідністю і, відповідно, ефективністю охолодження. До помітних недоліків цього металу можна віднести деяку схильність до корозії під дією вологи і певних речовин. Тому в чистому вигляді мідь використовується порівняно рідко — частіше зустрічаються нікельовані підкладки (див. нижче).

— Нікельована мідь. Підкладка з міді, що має додаткове покриття...з нікелю. Таке покриття збільшує стійкість до корозії і подряпин, при цьому воно практично не впливає на теплопровідність підкладки і ефективність роботи. Правда, дана особливість дещо збільшує ціну радіатора, однак вона зустрічається переважно у висококласних системах охолодження, де цей момент практично непомітний на тлі загальної вартості пристрою.

— Нікельований алюміній. Підкладка з алюмінію з додатковим покриттям з нікелю. Про алюміній загалом див. вище, а покриття підвищує стійкість радіатора до корозії, появи подряпин і нерівностей. З іншого боку, воно позначається на вартості, притому що на практиці для ефективної роботи нерідко буває цілком достатньо і чистого алюмінію (тим більше що цей метал сам по собі досить стійкий до корозії). Тому даний варіант розповсюдження не отримав.
Динаміка цін
NZXT Kraken X63 часто порівнюють