Model
Konkretny model procesora zainstalowanego w laptopie, a raczej oznaczenie procesora w ramach jego serii (patrz wyżej). Znając pełną nazwę procesora (serię i model), możesz znaleźć szczegółowe dane na jego temat (aż do praktycznych recenzji) i wyjaśnić jego możliwości.
Częstotliwość taktowania
Częstotliwość taktowania procesora zainstalowanego w laptopie (dla procesorów wielordzeniowych częstotliwość poszczególnych rdzeni).
Teoretycznie wyższa częstotliwość taktowania ma pozytywny wpływ na wydajność, ponieważ pozwala procesorowi wykonać więcej operacji w ciągu jednostki czasu. Jednak w praktyce możliwości procesora zależą od wielu innych specyfikacji - przede wszystkim od serii, do której należy (patrz wyżej). Zdarza się nawet, że z dwóch chipów ten „wolniejszy” okazuje się wydajniejszy. Mając to na uwadze, sensowne jest porównywanie według częstotliwości taktowania tylko procesorów z tej samej serii, a najlepiej również z tej samej generacji; a laptop w całości należy oceniać na podstawie ogólnych specyfikacji systemu i testów porównawczych (patrz poniżej).
Maksymalna obsługiwana ilość pamięci RAM
Maksymalna ilość pamięci RAM, którą można zainstalować na laptopie. Zależy w szczególności od rodzaju stosowanych modułów pamięci, a także od liczby gniazd na nie. Warto zwrócić uwagę na parametr ten przede wszystkim, jeśli laptop jest kupowany z dalszą perspektywą na
rozszerzenie ilości RAM, a ilość faktycznie zainstalowanej w nim pamięci jest zauważalnie mniejsza niż maksymalna dostępna. Tak więc w laptopach pamięć RAM można rozbudować do
16 GB,
24 GB,
32 GB, 48 GB,
64 GB i nawet więcej —
128 GB.
Test 3DMark06
Wynik pokazany przez kartę graficzną laptopa w teście 3DMark06.
Ten test przede wszystkim określa, jak dobrze karta graficzna radzi sobie z intensywnymi obciążeniami, w szczególności ze szczegółową grafiką 3D. Wynik testu jest podany w punktach; im więcej punktów - tym wyższa wydajność karty graficznej. Wysokie wyniki w benchmarku 3DMark06 są szczególnie ważne w przypadku
laptopów gamingowych i zaawansowanych stacji roboczych. Trudno jednak nazwać je wiarygodnymi, gdyż pomiary są dokonywane na kartach graficznych o różnych TDP i podawany jest ogólny średni wynik. Zatem Twój laptop może uzyskać zarówno wynik wyższy od podanego, jak i mniejszy — wszystko zależy od TDP zainstalowanej karty graficznej.
Test 3DMark Vantage P
Wynik pokazany przez kartę graficzną laptopa w teście 3DMark Vantage P.
Vantage P to odmiana popularnego benchmarku 3DMark - kolejna wersja tego testu po 3DMark06 (patrz wyżej). Jak wszystkie tego typu testy, służy do sprawdzania wydajności karty graficznej przy dużym obciążeniu i wyświetla wyniki w punktach; im więcej punktów, tym mocniejsza i wydajniejsza jest karta graficzna. Wysokie wyniki w 3DMark Vantage P są szczególnie ważne, jeśli laptop ma być używany do wymagających gier. Trudno jednak nazwać je wiarygodnymi, gdyż pomiary są dokonywane na kartach graficznych o różnych TDP i podawany jest ogólny średni wynik. Zatem Twój laptop może uzyskać zarówno wynik wyższy od podanego, jak i mniejszy — wszystko zależy od TDP zainstalowanej karty graficznej.
Złącza
Złącza przewidziane w konstrukcji laptopa.
Ten punkt zawiera głównie dane dotyczące wyjść wideo:
VGA,
HDMI (wersje 1.4,
2.0,
2.1 i ich odmiany),
miniHDMI,
microHDMI,
DisplayPort,
miniDisplayPort). Ponadto mogą tutaj być wskazane inne typy złączy: audio
S/P-DIF, serwisowy
port COM. Ale informacje o takich interfejsach jak pełnowymiarowe USB, USB C, Thundebolt i LAN są podane w osobnych punktach (patrz niżej).
- VGA. Analogowe wyjście wideo, znane również jako gniazdo D-Sub 15 pin. Jest technicznie uważane za przestarzałe: ma niską odporność na zakłócenia, nie zapewnia transmisji dźwięku, a maksymalna obsługiwana rozdzielczość w praktyce nie przekracza 1280x1024. Niemniej jednak wejścia VGA są nadal dość powszechne w monitorach w dzisiejszych czasach i można je również znaleźć w innych rodzajach sprzętu wideo - w szczególności projektorach. Dlatego niektóre nowoczesne laptopy, głównie do celów multimedialnych, wyposażone są w podobne wyjścia - licząc na podłączenie do wspomnianych urządzeń wideo.
- HDMI. Najpopularniejszy współcześnie interfejs do pracy z treściami HD. Wykorzystuje cyfrową transmisję danych, umożliw
...ia jednoczesną transmisję wideo w wysokiej rozdzielczości i wielokanałowego dźwięku jednym przewodem. Większość współczesnych monitorów, telewizorów, projektorów i innych urządzeń wideo obsługujących HD ma co najmniej jedno wejście HDMI; więc ten rodzaj wyjścia obecnie jest niezwykle powszechny w laptopach.
- microHDMI i miniHDMI. Zmniejszone wersje HDMI opisane powyżej: są całkowicie podobne pod względem funkcjonalności i różnią się jedynie wielkością złącza. Są instalowane głównie w najcieńszych i najbardziej kompaktowych laptopach, dla których pełnowymiarowe HDMI jest zbyt nieporęczne.
Porty HDMI i mini/microHDMI we współczesnych laptopach mogą odpowiadać różnym wersjom:
- v 1.4. Najwcześniejszy z rozpowszechnionych standardów, wydany w 2009 roku. Umożliwia transmisję sygnału w rozdzielczości do 4096x2160 z prędkością 24 kl./s, a przy rozdzielczości Full HD liczba klatek może osiągnąć 120 kl./s; możliwa jest również transmisja wideo 3D.
- v 1.4a. Pierwszy dodatek do wersji 1.4, który obejmował w szczególności dodanie dwóch dodatkowych formatów wideo 3D.
- v 1.4b. Druga aktualizacja standardu HDMI 1.4, która wprowadziła jedynie drobne doprecyzowania i uzupełnienia specyfikacji v 1.4a.
- v 2.0. Globalna aktualizacja HDMI wprowadzona w 2013 roku. Złącze znane również jako HDMI UHD, umożliwia strumieniowe przesyłanie wideo 4K z prędkością klatek do 60 kl./s. Liczba kanałów audio może osiągnąć 32, jednocześnie może być emitowanych do 4 strumieni audio. Ponadto wprowadzono obsługę proporcji 21:9 i niektóre ulepszenia treści 3D.
- v 2.0a. Pierwsza aktualizacja HDMI 2.0. Kluczową innowacją jest kompatybilność z treścią HDR (patrz „Obsługa HDR”).
- v 2.0b. Druga aktualizacja wersji 2.0. Kluczowe innowacje dotyczą głównie pracy z HDR - w szczególności dodano obsługę HDR10 i HLG.
- v 2.1. Jedna z najnowszych wersji wydana jesienią 2017 roku. Dalszy wzrost przepustowości umożliwił obsługę wideo 4K, a nawet 8K przy częstotliwości odświeżania do 120 kl./s. Ponadto kluczowe ulepszenia obejmują rozszerzone możliwości pracy z HDR. Należy pamiętać, że do pełnego wykorzystania zalet HDMI v2.1 wymagane są kable HDMI Ultra High Speed, chociaż podstawowa funkcjonalność jest dostępna przy użyciu zwykłych kabli.
- DisplayPort. Cyfrowy port o dużej prędkości umożliwia przesyłanie tak wideo, jak i dźwięku w jakości HD. Bardzo podobny do HDMI, zapewnia większą prędkość przesyłania danych i pozwala na użycie dłuższych kabli, ale mniej powszechny, używany głównie w urządzeniach komputerowych.
- miniDisplayPort. Zmniejszona wersja DisplayPort opisanego powyżej, zaprojektowana w celu uczynienia złącza bardziej kompaktowym; poza wymiarami nie różni się od oryginalnego interfejsu. Jakiś czas temu było to standardowe złącze wideo do laptopów Apple; a nawet interfejs Thunderbolt, który je zastąpił, w wersjach 1 i 2 (patrz poniżej) wykorzystuje złącze identyczne ze złączem miniDisplayPort.
Zarówno pełnowymiarowy DisplayPort, jak i jego zmniejszona odmiana mogą należeć do różnych wersji. Najpopularniejsze dziś opcje to:
- v 1.2. Najwcześniejsza z rozpowszechnionych w laptopach wersji, wydana w 2010 roku. Najważniejsze innowacje prezentowane w tej wersji to obsługa 3D, możliwość jednoczesnej pracy z kilkoma strumieniami wideo w celu szeregowego łączenia ekranów (daisy chain), a także możliwość pracy przez złącze miniDisplayPort. Przepustowość v 1.2 jest wystarczająca, aby w pełni obsługiwać wideo 5K przy 30 klatkach na sekundę i wideo 8K - z pewnymi ograniczeniami.
- v 1.2a. Aktualizacja wersji 1.2, wydana w 2013. Jedną z najbardziej godnych uwagi innowacji jest możliwość pracy z AMD FreeSync (patrz wyżej). Przepustowość i obsługiwane rozdzielczości pozostały niezmienione.
- v 1.3. Wersja DisplayPort wydana w 2014 roku. W porównaniu z poprzednią wersją przepustowość wzrosła 1,5 razy na linię i prawie 2 razy - ogólnie na złączu (odpowiednio 8,1 Gb/s i 32,4 Gb/s). Umożliwiło to między innymi zapewnienie pełnej obsługi wideo 8K przy 30 kl./s, a także zwiększenie maksymalnej liczby klatek na sekundę w standardach 4K i 5K do 120 i 60 kl./s odpowiednio. W trybie „daisy chain” standard ten pozwala na pracę z dwoma ekranami 4K UHD (3840x2160) przy częstotliwości odświeżania 60 Hz lub z czterema ekranami 2560x1600 przy tej samej częstotliwości. Ponadto w tej wersji wprowadzono obsługę trybu Dual-mode, co zapewnia kompatybilność z interfejsami HDMI i DVI poprzez najprostsze adaptery pasywne.
- v 1.4. Wersja wprowadzona w marcu 2016 r. Przepustowość pozostaje niezmieniona w stosunku do poprzedniego standardu, ale dodano kilka ważnych funkcji - w szczególności obsługę Display Stream Compression 1.2, standardu HDR10 i Rec. 2020, a maksymalna liczba obsługiwanych kanałów audio wzrosła do 32.
- v 1.4a. Aktualizacja wydana w 2018 roku „po cichu” - nawet bez oficjalnego komunikatu prasowego. Główną innowacją była aktualizacja technologii Display Stream Compression z wersji 1.2 do wersji 1.2a.
- S/P-DIF. Wyjście do transmisji dźwięku cyfrowego, w tym wielokanałowego. Ma dwa rodzaje - optyczny i elektryczny; pierwszy jest absolutnie niewrażliwy na zakłócenia, ale wykorzystuje raczej delikatne kable, drugi nie wymaga szczególnej ostrożności w obsłudze, ale może podlegać zakłóceniom (choć kable są zwykle ekranowane). Laptopy używają głównie optycznego S/P-DIF, a ze względu na kompaktowość, złącze to jest połączone z gniazdem mini-Jack do słuchawek. Jednak w każdym razie konkretne cechy tego interfejsu należy wyjaśniać osobno.
- Port COM. Uniwersalny interfejs do podłączania różnych urządzeń zewnętrznych, w szczególności modemów telefonicznych, jak również do bezpośredniego połączenia między dwoma komputerami. Znany również jako RS-232 (zgodnie z nazwą złącza). Obecnie jest uważany za przestarzały ze względu na rozpowszechnianie się bardziej kompaktowych, szybszych i bardziej funkcjonalnych interfejsów, głównie USB. Niemniej jednak wiele typów urządzeń, w tym specjalistycznych, wykorzystuje właśnie port COM jako interfejs sterujący. Do takich urządzeń należą zasilacze awaryjne, odbiorniki satelitarne i urządzenia komunikacyjne, systemy bezpieczeństwa i alarmowe itp. W związku z tym porty COM, chociaż prawie nigdy nie są używane w laptopach konsumenckich, nadal występują w niektórych specjalistycznych modelach.Interfejs Thunderbolt
Liczba
złączy Thunderbolt, a także ich wersja (
Thunderbolt v3,
Thunderbolt v4,
Thunderbolt v5), które są dostępne w laptopie.
Thunderbolt to uniwersalny szybki interfejs znany przede wszystkim z laptopów Apple, jednak używany również przez innych producentów. Takie połączenie faktycznie łączy w sobie kilka interfejsów - przynajmniej PCI-E dla urządzeń peryferyjnych i DisplayPort do wyprowadzania obrazu (i dźwięku) na zewnętrzne ekrany, a w najnowszych wersjach i inne. Dzięki temu Thunderbolt może służyć zarówno jako złącze peryferyjne, jak i jako wyjście wideo. Jeszcze większą uniwersalność tego interfejsu zapewnia funkcja „daisy chain” - połączenie szeregowe kilku urządzeń (do 6) do jednego portu; i mogą to być jednocześnie monitory i inne urządzenia peryferyjne, a w urządzeniach Apple też inne komputery tej firmy. W ten sposób niewielka liczba złączy może być kompensowana przez połączenie szeregowe.
— Thunderbolt 3. Wersja wprowadzona w 2015 roku. W tej generacji twórcy zrezygnowali ze złącza DisplayPort na rzecz bardziej uniwersalnego USB C. W związku z tym połączenie Thunderbolt v3 w laptopach jest często realizowane nie jako osobne złącze, jednak jako specjalny tryb działania standardowego USB C (patrz „Alternate Mode”). Wyjścia i urządzenia dla USB4 (patrz wyżej) również mogą być początkowo kompatybilne z tym interf
...ejsem (chociaż nie jest to ściśle wymagane). Opcjonalną, jednak bardzo powszechną funkcją jest obsługa Power Delivery, która pozwala na dostarczenie do 100 W mocy do podłączonych urządzeń przez ten sam kabel. Prędkość transmisji danych może sięgać 40 Gb/s, jednak należy pamiętać, że przy długości przewodu powyżej 0,5 m może być wymagany specjalny kabel aktywny, aby utrzymać tę prędkość. Jednak zwykłe pasywne kable USB C nadają się również do pracy z Thunderbolt v3 - poza tym, że prędkość może się okazać zauważalnie niższa od maksymalnej możliwej (choć wyższa niż 20 Gb/s, na której pracuje USB 3.2 gen2).
— Thunderbolt v4. Najnowsza (stan na koniec 2020 r.) wersja tego interfejsu, zaprezentowana latem tego samego roku. Wykorzystuje również złącze USB C. Formalnie maksymalna przepustowość pozostaje taka sama jak w poprzedniku - 40 Gb/s; jednak wraz z szeregiem ulepszeń rzeczywista łączność znacznie wzrosła. Tak więc Thunderbolt v4 pozwala na jednoczesną transmisję sygnału do (przynajmniej) dwóch monitorów 4K i zapewnia prędkość transmisji danych PCI-E nie mniejszą niż 32 Gb/s (w porównaniu z 16 Gb/s w poprzedniej wersji). Ponadto interfejs ten jest domyślnie wzajemnie kompatybilny z USB4, a funkcję „daisy chain” uzupełnia możliwość podłączenia koncentratorów sieciowych z maksymalnie 4 portami Thunderbolt v4. Inne funkcje obejmują ochronę przed atakami typu DMA (direct memory access).
— Thunderbolt v5. W piątej edycji interfejs Thunderbolt w dalszym ciągu opiera się na złączu USB C. "W domyślnej" konfiguracji zapewnia dwukierunkową przepustowość do 80 Gb/s, a technologia Bandwidth Boost pozwala na prędkości do 120 Gb/s. Thunderbolt v5 obsługuje podłączenie kilka monitorów 8K, trzy monitory 4K o częstotliwości odświeżania 144 Hz lub jeden wyświetlacz zewnętrzny o częstotliwości odświeżania 540 Hz. Dodatkowo obsługa PCIe Gen 4 zapewnia wystarczającą przepustowość dla zewnętrznych kart graficznych (do 64 Gb/s), co otwiera nowe możliwości wykorzystania sztucznej inteligencji i uczenia maszynowego. Poprzez interfejs Thunderbolt v5 przekazywana jest moc ładowania do 240 W z wykorzystaniem technologii USB Power Delivery 3.1 – najmocniejsze i najbardziej energochłonne laptopy można bezpiecznie ładować poprzez port USB.