Tryb nocny
Polska
Katalog   /   Komputery   /   Laptopy i akcesoria   /   Laptopy

Porównanie Acer Predator Helios 300 PH315-51 [PH315-51-534S] vs Acer Nitro 5 AN515-52 [AN515-52-54XA]

Dodaj do porównania
Acer Predator Helios 300 PH315-51 (PH315-51-534S)
Acer Nitro 5 AN515-52 (AN515-52-54XA)
Acer Predator Helios 300 PH315-51 [PH315-51-534S]Acer Nitro 5 AN515-52 [AN515-52-54XA]
od 3 182 zł
Produkt jest niedostępny
od 2 857 zł
Produkt jest niedostępny
Opinie
1
0
0
0
TOP sprzedawcy
Rodzajlaptoplaptop
Wyświetlacz
Przekątna ekranu15.6 "15.6 "
Rodzaj matrycyIPSIPS
Powłoka ekranumatowamatowa
Rozdzielczość ekranu1920x1080 (16:9)1920x1080 (16:9)
Częstotliwość odświeżania60 Hz60 Hz
Jasność240 nity
Kontrast810 :1
Przestrzeń barw (sRGB)70 %
Przestrzeń barw (Adobe RGB)52 %
Przestrzeń barw (NTSC)50 %
Procesor
SeriaCore i5Core i5
Model8300H8300H
Liczba rdzeni44
Liczba wątków88
Częstotliwość taktowania2.3 GHz2.3 GHz
Częstotliwość TurboBoost / TurboCore4 GHz4 GHz
Test Passmark CPU Mark9377 punkty(ów)9377 punkty(ów)
Test SuperPI 1M9.61 с9.61 с
Pamięć RAM
Pojemność pamięci8 GB8 GB
Maksymalna obsługiwana ilość pamięci RAM32 GB32 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania pamięci2400 MHz2666 MHz
Liczba gniazd pamięci22
Karta graficzna
Rodzaj karty graficznejdedykowanadedykowana
Seria karty graficznejNVIDIA GeForceNVIDIA GeForce
Model karty graficznejGTX 1060GTX 1060
Pamięć karty graficznej6 GB6 GB
Rodzaj pamięciGDDR5GDDR5
Obsługa VR
Test 3DMark0626152 punkty(ów)26152 punkty(ów)
Test 3DMark Vantage P34127 punkty(ów)34127 punkty(ów)
Dysk
Rodzaj dyskuHDDSSD M.2
Pojemność dysku1000 GB256 GB
Dodatkowy slot 2.5"
Dodatkowe złącze M.21 szt.
Złącza i interfejsy
Złącza
HDMI
HDMI
Czytnik kart pamięci
USB 2.02 szt.2 szt.
USB 3.2 gen11 szt.1 szt.
USB C 3.2 gen11 szt.1 szt.
Obsługa Alternate Mode
LAN (RJ-45)1 Gb/s1 Gb/s
Multimedia
Kamera internetowa1280x720 (HD)1280x720 (HD)
Zaślepka na kamerę
Liczba głośników2 szt.2 szt.
Zabezpieczenia
blokada kensington / noble
blokada kensington / noble
Klawiatura
Podświetlenieczerwoneczerwone
Konstrukcja klawiszywyspowewyspowe
Klawiatura numeryczna
Sterowanietouchpadtouchpad
Akumulator
Pojemność baterii3320 mAh3220 mAh
Pojemność baterii48 W*h48 W*h
Napięcie baterii15.2 V15.2 V
Maks. czas pracy6 h8 h
Zasilanie z USB C (Power Delivery)
Szybkie ładowanie
Dane ogólne
Preinstalowany system operacyjnyEndless OSLinux
Materiał obudowyaluminium / tworzywo sztucznematowe tworzywo sztuczne
Wymiary (SxGxW)390x266x26.8 mm390x266x26.8 mm
Waga2.7 kg2.7 kg
Kolor obudowy
Data dodania do E-Katalogluty 2020wrzesień 2018

Jasność

Maksymalna jasność, jaką może zapewnić ekran laptopa.

Im jaśniejsze światło otoczenia, tym jaśniejszy musi być ekran laptopa, w przeciwnym razie obraz na nim może być trudny do odczytania. I odwrotnie, przy słabym świetle otoczenia wysoka jasność nie jest konieczna - powoduje duże obciążenie oczu (jednak w tym przypadku wszystkie współczesne laptopy są wyposażone w kontrolę jasności). W związku z tym im wyższy wskaźnik ten, tym bardziej uniwersalny jest ekran, tym szerszy jest zakres warunków, w których można go efektywnie używać. Wadą tych korzyści jest wzrost ceny i zużycia energii.

Jeśli chodzi o konkretne wartości, wiele współczesnych laptopów ma jasność 250 – 300 nitów lub nawet mniej. To wystarcza do pracy przy sztucznym oświetleniu o średniej intensywności, lecz przy jasnym naturalnym świetle mogą już wystąpić problemy z widocznością. Do użytku przy słonecznej pogodzie (szczególnie na zewnątrz) pożądany jest zapas jasności co najmniej 300 – 350 nitów. A w najbardziej zaawansowanych modelach parametr ten może wynosić 350 – 400 nitów, 401 – 500 nitów a nawet ponad 500 nitów.

Kontrast

Kontrast ekranu zainstalowanego w laptopie.

Kontrast to największa różnica w jasności między najjaśniejszą bielą a najciemniejszą czernią, jaką można uzyskać na jednym ekranie. Jest zapisywany jako współczynnik, na przykład rzędu 560:1; przy czym im wyższa pierwsza liczba, tym wyższy kontrast, tym bardziej zaawansowany jest ekran i tym lepszą jakość obrazu można na nim osiągnąć. Jest to szczególnie zauważalne przy dużych różnicach w jasności w obrębie jednej klatki: przy niskim kontraście pojedyncze szczegóły znajdujące się w najciemniejszych lub najjaśniejszych obszarach obrazu mogą zostać utracone, zwiększenie kontrastu pozwala w pewnym stopniu wyeliminować to zjawisko. Wadą tych korzyści jest zwiększony koszt.

Osobno należy podkreślić, że w tym przypadku wskazany jest tylko kontrast statyczny - różnica osiągana w ramach jednej klatki podczas normalnej pracy, przy stałej jasności i bez użycia specjalnych technologii. W celach reklamowych niektórzy producenci mogą również podawać dane o tzw. kontraście dynamicznym - można go mierzyć w bardzo imponujących liczbach (siedmiocyfrowych lub więcej). Warto jednak skupić się przede wszystkim na statycznym kontraście - to podstawowa cecha każdego wyświetlacza.

Jeśli chodzi o konkretne wartości, nawet na najbardziej zaawansowanych ekranach wartość ta nie przekracza 2000:1. Ogólnie rzecz biorąc, współczesne laptopy mają raczej niski kontrast - zakłada się, że do zadań wymagających bardziej zaawansowa...nych właściwości obrazu rozsądniej jest użyć ekranu zewnętrznego (monitora lub telewizora).

Przestrzeń barw (sRGB)

Przestrzeń barw matrycy laptopa zgodnie z modelem przestrzeni barw Rec.709 lub sRGB.

Przestrzeń barw opisuje zakres barw, który można wyświetlić na ekranie. Podaje się w procentach, ale nie w odniesieniu do całego widma widocznych barw, ale w odniesieniu do warunkowej przestrzeni barw (modelu przestrzeni barw). Wynika to z faktu, że żaden nowoczesny ekran nie jest w stanie wyświetlić wszystkich barw widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości ekranu, tym lepsze jest jego odwzorowanie barw.

W szczególności sRGB i Rec. 709 to najpopularniejsze z dzisiejszych modeli przestrzeni barw; mają ten sam zakres i różnią się tylko obszarem zastosowania (sRGB używa się w komputerach, Rec. 709 - w HDTV). Dlatego im bliższa przestrzeń barw jest 100%, tym dokładniej barwy na ekranie będą odpowiadać barwom, które zostały pierwotnie wymyślone przez twórcę filmu, gry itp. Jednocześnie należy pamiętać, że taka dokładność nie jest szczególnie potrzebna w codziennym użytkowaniu - ma kluczowe znaczenie tylko do profesjonalnej pracy z kolorem; i nawet w takich przypadkach wygodniej jest kupić osobny monitor z szeroką przestrzenią barw do laptopa niż szukać laptopa z wysokiej jakości (i odpowiednio drogą) matrycą.

Przestrzeń barw (Adobe RGB)

Przestrzeń barw matrycy laptopa oparta na modelu przestrzeni barw Adobe RGB.

Przestrzeń barw opisuje zakres barw, który można wyświetlić na ekranie. Podaje się w procentach, ale nie w odniesieniu do całego widma widocznych barw, ale w odniesieniu do warunkowej przestrzeni barw (modelu przestrzeni barw). Wynika to z faktu, że żaden nowoczesny ekran nie jest w stanie wyświetlić wszystkich barw widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości ekranu, tym lepsze jest jego odwzorowanie barw.

Model przestrzeni barw Adobe RGB został pierwotnie opracowany do użytku w druku; zakres barw, które obejmuje, odpowiada możliwościom profesjonalnego sprzętu poligraficznego. Dlatego w teorii obszerne pokrycie według tego modelu będzie przydatne dla tych, którzy zajmują się projektowaniem i układem wysokiej jakości produktów drukowanych. Co prawda, ekrany laptopów w większości mają bardzo skromne wartości Adobe RGB, rzadko przekraczające 74%; niemniej jednak można znaleźć wysokiej klasy modele, w których liczba ta zbliża się do 100%. Oczywiście koszt takich laptopów będzie również odpowiedni; dlatego warto zwrócić na nie uwagę przede wszystkim wtedy, gdy kluczowa jest umiejętność pracy z kolorem „w biegu”. Jeśli ma się to odbywać w jednym miejscu, bardziej uzasadniony może być zakup osobnego monitora z rozbudowaną przestrzenią barw (zwłaszcza, że monitor o takich specyfikacjach jest łatwiejszy do...znalezienia niż laptop).

Przestrzeń barw (NTSC)

Przestrzeń barw matrycy laptopa zgodnie z modelem przestrzeni barw NTSC.

Przestrzeń barw opisuje zakres barw, które można wyświetlić na ekranie. Podaje się w procentach, ale nie w odniesieniu do całego widma widocznych barw, ale w odniesieniu do warunkowej przestrzeni barw (modelu przestrzeni barw). Wynika to z faktu, że żaden nowoczesny ekran nie jest w stanie wyświetlić wszystkich barw widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości ekranu, tym lepsze jest jego odwzorowanie barw.

W szczególności NTSC jest jednym z pierwszych modeli przestrzeni barw stworzonych w 1953 roku dla telewizji kolorowej. Nie jest używany przy produkcji nowoczesnych matryc LCD, ale służy do ich opisu i porównania. NTSC obejmuje szerszy zakres barw niż standardowo używany w technologii komputerowej sRGB; dlatego nawet niewielka liczba procentów w tym przypadku odpowiada dość szerokiej przestrzeni. Na przykład wartość 72% i więcej według NTSC już uważana jest za dobry wskaźnik do wykorzystania w projektowaniu i grafice. W tym samym czasie te same liczby NTSC na różnych ekranach mogą odpowiadać różnym wartościom sRGB; więc jeśli dokładne odwzorowanie barw jest dla użytkownika kluczowe, szczegóły te należy wyjaśnić przed zakupem.

Warto też zaznaczyć, że wśród poszczególnych monitorów łatwiej jest znaleźć ekran z szeroką przestrzenią barw; jest też tańszy niż laptop o podobnej specyfikacji wyświ...etlacza. Dlatego wybór laptopa z wysokiej klasy ekranem ma sens głównie wtedy, gdy przenośność jest nie mniej ważna niż wysokiej jakości odwzorowanie barw.

Częstotliwość taktowania pamięci

Częstotliwość taktowania pamięci RAM zainstalowanej w laptopie.

Im wyższa częstotliwość (przy tym samym rodzaju i wielkości pamięci), tym wyższa ogólna wydajność pamięci RAM i tym szybciej laptop poradzi sobie z zadaniami wymagającymi dużej ilości zasobów. Co prawda, moduły o tej samej częstotliwości mogą nieznacznie różnić się rzeczywistą prędkością ze względu na różnice w innych specyfikacjach; ale różnica ta staje się znacząca tylko w bardzo szczególnych przypadkach, dla przeciętnego użytkownika nie jest ona krytyczna. Jeśli chodzi o konkretne wartości, najpopularniejszymi modułami na współczesnym rynku są 2400 MHz, 2666 MHz, 2933 MHz i 3200 MHz. Pamięci o częstotliwości taktowania 2133 MHz lub mniejszej występują głównie w przestarzałych i budżetowych urządzeniach, a w wysokowydajnych zestawach parametr ten wynosi 3733 MHz, 4266 MHz, 4800 MHz, 5200 MHz, 5500 MHz, 5600 MHz i więcej.

Rodzaj dysku

Rodzaj dysku standardowo zainstalowanego w laptopie.

Klasyczne dyski twarde (HDD) we współczesnych laptopach są dość rzadkie w czystej postaci. Zamiast tego, półprzewodnikowe moduły SSD stają się coraz bardziej powszechne, w tym w kombinacjach HDD+SSD i SSHD+SSD. Także warto zaznaczyć, że wśród takich modułów bardzo powszechne są dyski SSD M.2, które ponadto mogą obsługiwać NVMe i/lub należą do zaawansowanej serii Intel Optane. Oto główne cechy tych opcji w różnych kombinacjach (a także inne opcje dysków, które można znaleźć we współczesnych laptopach):

— HDD. Klasyczny dysk twardy wykorzystujący nośnik magnetyczny, nie uzupełniany przez żaden inny rodzaj pamięci. Dyski HDD wyróżniają się niskim kosztem w przeliczeniu na gigabajt pojemności, co umożliwia tworzenie bardzo pojemnych i jednocześnie dość niedrogich nośników. Z drugiej strony takie pamięci są uważane za mniej doskonałe niż dyski SSD: w szczególności są raczej powolne, a poza tym nie są odporne na uderzenia i wstrząsy (to ostatnie jest szczególnie ważne biorąc pod uwagę fakt, że laptopy są pierwotnie urządzeniami przenośnymi). Dlatego ta opcja w naszych czasach jest dość rzadka, głównie wśród niedrogich konfiguracji.

— SSD. Pamięć półprzewodnikowa oparta na technologii Flash. Gene...ralnie dyski tego typu są znacznie droższe niż dyski HDD o tej samej wielkości, ale mają nad nimi szereg zalet - przede wszystkim jest to duża prędkość działania, a także zdolność do bezproblemowego wytrzymywania dość silnych wstrząsów i wibracji. Warto podkreślić jednak, że w tym przypadku chodzi o dyski SSD w oryginalnym formacie, które nie wykorzystują interfejsu M.2, nie należą do serii Optane i nie są modułami eMMC ani UFS (opis tych wszystkich funkcji znajduje się poniżej). Jest to najprostsza i najłatwiej dostępna forma pamięci flash - w szczególności najczęściej wykorzystuje ona połączenie SATA, co nie pozwala na pełne wykorzystanie potencjału takiej pamięci. Z drugiej strony, nawet „zwykłe” moduły SSD nadal działają dużo szybciej niż dyski HDD i są dużo tańsze niż bardziej zaawansowane rozwiązania.

— SSD M.2. Moduł SSD wykorzystujący złącze M.2. Ogólne informacje na temat dysków SSD można znaleźć powyżej; a złącze M.2 zostało zaprojektowane specjalnie dla zaawansowanych, ale niewielkich komponentów wewnętrznych, w tym dysków półprzewodnikowych. Jedną z cech takiego połączenia jest to, że najczęściej odbywa się ono zgodnie ze standardem PCI-E - zapewnia to dużą prędkość transmisji danych (do 8 GB/s, potencjalnie więcej) i pozwala na wykorzystanie wszystkich możliwości dysków SSD. Jednocześnie istnieją moduły M.2 pracujące na starszym interfejsie SATA - jego prędkość nie przekracza 600 MB/s, ale taki sprzęt kosztuje mniej niż moduły z M.2 PCI-E. Aby uzyskać więcej informacji, zobacz „Interfejs dysku M.2” - właśnie ten punkt umożliwia ocenę konkretnych możliwości dysku SSD M.2.

— SSD M.2 Optane. Dysk SSD M.2 (patrz wyżej) należący do serii Intel Optane. Główną cechą takich modułów jest wykorzystanie technologii 3D Xpoint - różni się ona znacznie od NAND, na której budowano większość konwencjonalnych modułów SSD. W szczególności 3D Xpoint pozwala na dostęp do danych na poziomie poszczególnych komórek i obejście się bez dodatkowych operacji, co przyspiesza pracę i zmniejsza opóźnienia. Co więcej, taka pamięć jest znacznie trwalsza. Jej główną wadą jest dość wysoki koszt. Warto też zwrócić uwagę, że przewaga Optane nad bardziej tradycyjnymi modułami SSD jest najbardziej widoczna przy tzw. „płytkiej głębokości kolejki” - czyli przy niewielkim obciążeniu dysku, gdy jednocześnie odbiera on niewielką liczbę żądań. Jednak większość codziennych zadań (praca z dokumentami, surfowanie po sieci, stosunkowo mało wymagające gry) realizowana jest w tym trybie, więc ten szczegół można przypisać zaletom - zwłaszcza, że przewaga Optane, choć maleje, nie znika wraz ze wzrostem obciążenia.

— Dysk SSD M.2 NVMe. NVMe to standard przesyłania danych zaprojektowany specjalnie dla SSD. Wykorzystuje magistralę PCI-E i pozwala maksymalnie ujawnić potencjał tej pamięci, znacznie zwiększając prędkość wymiany danych. Może to być zarówno jedyny dysk, jak i dodatek do dysku HDD lub SSHD. Początkowo uważano, że NVMe ma sens stosować głównie w zestawach komputerowych o wysokiej wydajności, zwłaszcza w grach. Jednak rozwój i niski koszt produkcji sprawiły, że ​​takie dyski spotykane są także w prostszych laptopach.

— HDD+SSD. Obecność dwóch oddzielnych dysków w laptopie - HDD i zwykłego dysku SSD (nie M.2, nie Optane). Zalety i wady tego typu dysków opisano szczegółowo powyżej; a ich połączenie w jeden system pozwala łączyć zalety i częściowo kompensować wady. W takich przypadkach dysk SSD jest zwykle o zauważalnie mniejszej pojemności niż dysk twardy i służy do przechowywania danych, dla których ważna jest wysoka prędkość dostępu: system operacyjny, programy operacyjne itp. Z kolei wygodnie jest na dysku twardym przechowywać informacje o znacznej pojemności, a jednocześnie nie wymagające specjalnej prędkości dostępu; klasycznym przykładem są pliki multimedialne i dokumenty. Ponadto moduł półprzewodnikowy może służyć jako szybka pamięć podręczna dysku twardego - podobnie jak dysk SSHD opisany poniżej. Zwykle wymaga to jednak specjalnych ustawień oprogramowania, podczas gdy tryb „dwóch oddzielnych dysków” jest zwykle dostępny domyślnie.
Warto również zauważyć, że we współczesnych laptopach pakiety HDD są coraz częściej używane nie ze zwykłymi dyskami SSD, ale z bardziej zaawansowanymi modułami M.2 (w tym M.2 Optane). Niemniej jednak ta opcja jest nadal używana - głównie wśród stosunkowo niedrogich konfiguracji.

— SSHD. Dysk typu combo, który łączy dysk twardy (HDD) i moduł półprzewodnikowy (SSD). Różni się od opisanej powyżej kombinacji HDD+SSD pod dwoma względami. Po pierwsze, oba nośniki są w tej samej obudowie i są postrzegane przez system jako całość. Po drugie, przeważnie dysk twardy jest używany bezpośrednio do przechowywania danych, a pamięć SSD pełni rolę usługową - działa jako szybka pamięć podręczna dla dysku twardego. W praktyce wygląda to tak: dane z dysku twardego, do którego użytkownik najczęściej uzyskuje dostęp, są kopiowane na dysk SSD i przy kolejnym dostępie ładowane są z dysku SSD, a nie z HDD. Pozwala to znacznie przyspieszyć pracę w porównaniu z konwencjonalnymi dyskami twardymi. Co prawda pod względem wydajności takie „hybrydy” są nadal gorsze nawet od konwencjonalnych dysków SSD, nie wspominając o rozwiązaniach M.2 i Optane - ale kosztują znacznie mniej.

— HDD+SSD M.2. Połączenie klasycznego dysku twardego z półprzewodnikowym modułem SSD przy użyciu złącza M.2. Aby uzyskać więcej informacji na temat tej kombinacji, zobacz „HDD+SSD”: prawie wszystko, co tam podano, ma również znaczenie dla tego przypadku, chyba, że dyski SSD M.2 są w stanie zapewnić wyższą prędkość operacyjną (patrz również powyżej - w punkcie „SSD M.2”).

— HDD+Optane M.2. Połączenie klasycznego dysku twardego z półprzewodnikowym modułem SSD, który wykorzystuje złącze M.2 i należy do serii Intel Optane. Ta kombinacja jest ogólnie podobna do pakietu „HDD+SSD” (patrz wyżej), chyba że możliwości dysków Optane są bardziej zaawansowane (patrz także powyżej - „SSD M.2 Optane”).

— SSHD+SSD M.2. Połączenie dysku SSD z półprzewodnikowym modułem SSD M.2. Ogólnie jest podobny do kombinacji „HDD + SSD M.2” (patrz wyżej), z tym, że zamiast konwencjonalnego dysku twardego używany jest bardziej zaawansowany i szybki dysk hybrydowy (patrz również powyżej). To dodatkowo zwiększa koszt, ale poprawia wydajność.

— eMMC. Rodzaj dysków półprzewodnikowych, pierwotnie używany jako wbudowana pamięć trwała w smartfonach i tabletach, ale ostatnio instalowany w laptopach. Różni się od SSD (patrz wyżej) z jednej strony niższym kosztem i dobrą energooszczędnością, z drugiej strony mniejszą prędkością i niezawodnością. W związku z tym eMMC występuje obecnie głównie wśród laptopów konwertowalnych i laptopów-tabletów (patrz „Rodzaj”) - dla nich niski pobór mocy jest ważniejszy niż maksymalna wydajność. Należy również pamiętać, że takie dyski są zwykle wbudowane i nie wymagają wymiany.

— HDD+eMMC. Połączenie klasycznego dysku twardego z modułem półprzewodnikowym eMMC. Cechy każdego typu dysków zostały szczegółowo opisane powyżej, a ich kombinacja stosowana jest głównie w urządzeniach typu „laptop-tablet” (patrz „Rodzaj”). W tym przypadku dysk eMMC jest instalowany w górnej części urządzenia i służy do przechowywania systemu operacyjnego oraz najważniejszych danych, do których potrzebuje się stałego dostępu; a dysk twardy znajdujący się w dolnej połowie służy jako dodatkowa pamięć dla dużych ilości danych (na przykład kolekcji filmów).

— SSD M.2+eMMC. Połączenie w jednym laptopie dwóch modułów półprzewodnikowych - SSD M.2 i eMMC. Aby uzyskać więcej informacji na temat cech obu typów pamięci, zobacz powyżej, a ich łączenie jest raczej egzotyczną opcją. Służy głównie do zwiększania całkowitej wielkości pamięci półprzewodnikowej bez znacznego zwiększania kosztów (warto przypomnieć, że eMMC jest tańsze niż dysk SSD M.2 o tym samym rozmiarze). Ponadto, jeśli moduł eMMC jest zwykle wbudowany, to dysk SSD M.2 jest z definicji wymienny, a w razie potrzeby można go zastąpić innym dyskiem.

— UFS. Kolejny rodzaj pamięci półprzewodnikowej, pierwotnie przeznaczony dla smartfonów i tabletów - wraz z opisanym powyżej eMMC. Różni się od tego ostatniego zarówno wysoką wydajnością, jak i zwiększonym kosztem. Wobec tego takie dyski są niezwykle rzadkie wśród laptopów: tam, gdzie brakuje możliwości eMMC, producenci zwykle używają pełnowartościowych dysków SSD.

Pojemność dysku

Pojemność dysku zainstalowanego w laptopie. Jeśli istnieje kilka oddzielnych dysków (na przykład HDD+SSD, patrz „Rodzaj dysku”) - w danym rozdziale wskazuje się pojemność najbardziej pojemnego nośnika (w naszym przykładzie HDD).

Bardziej pojemny dysk pozwala na przechowywanie większej ilości danych, ale jest droższy. Warto pamiętać, że cena zależy również od rodzaju nośnika: na przykład dyski SSD są znacznie droższe niż dyski twarde tej samej wielkości. Dlatego najlepiej bezpośrednio porównywać dyski tego samego typu. Jeśli chodzi o konkretne pojemności, najbardziej skromne wskaźniki są typowe dla konfiguracji z pamięcią półprzewodnikową - SSD tego lub innego typu lub eMMC (patrz „Rodzaj dysku”): wśród nich można znaleźć rozwiązania o pojemności 240 – 360 GB, a nawet 128 GB lub mniej. Pojemności dysków twardych zaczynają się od 480 – 512 GB; pojemność rzędu 1 TB można nazwać średnią, a najbardziej pojemne nowoczesne laptopy wyposażone są w pamięci masowe o pojemności 2 TB lub nawet więcej.

Dodatkowy slot 2.5"

Obecność w laptopie dodatkowego slotu na wewnętrzny dysk formatu 2.5 cala.

Z reguły aby zamontować dysk w takim slocie lub go wymontować, nie trzeba rozbierać całego laptopa - wystarczy zdjąć pokrywę lub wyjąć zaślepkę. Jeśli chodzi o 2.5", jest to tradycyjny format dla dysków twardych (HDD) do laptopów, chociaż inne typy nośników (SSD i SSHD - patrz „Typ nośnika") mogą również być produkowane w tym formacie. Do podłączenia dysków 2.5" zwykle korzystano ze złącza SATA - nie jest ono tak szybkie, jak w nowszych standardach, takich jak M.2 PCI-E (patrz „Interfejs dysku”), jednak jest tańsze, a do dysku twardego to złącze zupełnie wystarczy.

Zatem obecność dodatkowego slotu 2.5" pozwala szybko i niedrogo zwiększyć całkowitą pojemność dysków do laptopów.
Acer Predator Helios 300 PH315-51 często porównują
Acer Nitro 5 AN515-52 często porównują