Tryb nocny
Polska
Katalog   /   Komputery   /   Laptopy i akcesoria   /   Laptopy

Porównanie Acer Aspire 3 A315-42 [A315-42-R2XH] vs HP 15-db0000 [15-DB0446UR 7ND18EA]

Dodaj do porównania
Acer Aspire 3 A315-42 (A315-42-R2XH)
HP 15-db0000 (15-DB0446UR 7ND18EA)
Acer Aspire 3 A315-42 [A315-42-R2XH]HP 15-db0000 [15-DB0446UR 7ND18EA]
od 1 782 zł
Produkt jest niedostępny
od 928 zł
Produkt jest niedostępny
Opinie
1
0
0
0
TOP sprzedawcy
Rodzajlaptoplaptop
Wyświetlacz
Przekątna ekranu15.6 "15.6 "
Rodzaj matrycyTN+film*VA
Powłoka ekranuantyrefleksyjnaantyrefleksyjna
Rozdzielczość ekranu1920x1080 (16:9)1920x1080 (16:9)
Częstotliwość odświeżania60 Hz60 Hz
Procesor
SeriaRyzen 5Fusion A6
Model3500UA6-9225
Nazwa kodowaPicasso (Zen+)
Liczba rdzeni42
Liczba wątków82
Częstotliwość taktowania2.1 GHz2.6 GHz
Częstotliwość TurboBoost / TurboCore3.7 GHz3 GHz
Test 3DMark066857 punkty(ów)2132 punkty(ów)
Test Passmark CPU Mark7941 punkty(ów)2168 punkty(ów)
Test SuperPI 1M12 с20.22 с
Pamięć RAM
Pojemność pamięci8 GB4 GB
Maksymalna obsługiwana ilość pamięci RAM16 GB8 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania pamięci2400 MHz1866 MHz
Liczba gniazd pamięci21
Karta graficzna
Rodzaj karty graficznejzintegrowanazintegrowana
Seria karty graficznejAMD RadeonAMD Radeon
Model karty graficznejVega 8Radeon R4
Test 3DMark0612213 punkty(ów)4247 punkty(ów)
Test 3DMark Vantage P10294 punkty(ów)2542 punkty(ów)
Dysk
Rodzaj dyskuHDDSSD M.2
Pojemność dysku1000 GB128 GB
Dodatkowe złącze M.21 szt.
Złącza i interfejsy
Złącza
HDMI
 
HDMI
v 1.4b
Czytnik kart pamięci
USB 2.02 szt.1 szt.
USB 3.2 gen11 szt.2 szt.
Obsługa Alternate Mode
LAN (RJ-45)1 Gb/s1 Gb/s
Multimedia
Kamera internetowa640x480 (VGA)1280x720 (HD)
Zaślepka na kamerę
Liczba głośników2 szt.2 szt.
Zabezpieczenia
blokada kensington / noble
blokada kensington / noble
Klawiatura
Podświetleniebrakbrak
Konstrukcja klawiszywyspowewyspowe
Klawiatura numeryczna
Sterowanietouchpadtouchpad
Akumulator
Pojemność baterii37 W*h41 W*h
Maks. czas pracy7 h10.25 h
Zasilanie z USB C (Power Delivery)
Szybkie ładowanie
Dane ogólne
Preinstalowany system operacyjnyLinuxDOS
Materiał obudowymatowe tworzywo sztucznematowe tworzywo sztuczne
Wymiary (SxGxW)363x248x20 mm376x246x22.5 mm
Waga1.9 kg1.77 kg
Kolor obudowy
Data dodania do E-Katalogpaździernik 2019lipiec 2019

Rodzaj matrycy

Technologia, według której wykonana jest matryca laptopa.

Najbardziej rozpowszechnione w naszych czasach są matryce typu TN+film, IPS i *VA; rzadziej spotykane są ekrany typu OLED, AMOLED, QLED, miniLED, a także bardziej specyficzne rozwiązania, takie jak LTPS czy IGZO. Oto bardziej szczegółowy opis wszystkich tych rodzajów:

— TN-film. Najstarsza, najprostsza i najtańsza obecnie technologia. Kluczowe zalety tego typu wyświetlaczy to niski koszt i doskonały czas reakcji. Z drugiej strony takie matryce nie wyróżniają się wysoką jakością obrazu: jasność, dokładność kolorów i kąty widzenia ekranów TN-film są na średnim poziomie. Te wskaźniki są wystarczające do pracy z dokumentami, przeglądania stron internetowych, większości gier itp. Jednak w przypadku poważniejszych zadań wymagających wysokiej jakości i dokładnego obrazu (na przykład designu lub korekcji kolorów zdjęcia/wideo) takie ekrany są prawie bezużyteczne. Wobec tego matryce TN-film są obecnie stosunkowo rzadkie, głównie wśród niedrogich laptopów; bardziej zaawansowane urządzenia wyposażone są w ekrany lepszej jakości, najczęściej IPS.

— IPS (In-Plane Switching). Najpopularniejszy rodzaj matrycy do laptopów ze średniej i wyższej półki cenowej; jednak coraz...częściej występuje w niedrogich modelach, a w przypadku laptopów konwertowalnych i urządzeń „2 w 1” (patrz „Rodzaj”) jest to prawie standardowa opcja. Ekrany tego typu są zauważalnie lepsze od TN-film pod względem jakości „obrazka”: dają jasny, dokładny i bogaty obraz, który prawie się nie zmienia przy zmianie kąta widzenia. Ponadto technologia ta zapewnia szeroką gamę kolorów zgodnie z różnymi specjalnymi standardami (patrz poniżej) i jest odpowiednia do tworzenia wyświetlaczy z zaawansowanymi funkcjami, takimi jak obsługa HDR lub certyfikacja Pantone / CalMAN (patrz również poniżej). Początkowo matryce IPS były drogie i miały niską szybkość reakcji; jednak w naszych czasach stosuje się różne modyfikacje tej technologii, w których te wady są w pełni lub częściowo kompensowane. Jednocześnie różne modyfikacje mogą różnić się cechami praktycznymi: na przykład niektóre zostały stworzone z myślą o maksymalnej wiarygodności obrazu, inne wyróżniają się przystępnym kosztem itp. Więc warto osobno wyjaśnić faktyczne specyfikacje ekranu IPS przed zakupem - zwłaszcza jeśli laptop ma być używany do określonych zadań, w których jakość obrazu ma kluczowe znaczenie.

— *VA. Różne modyfikacje matryc typu „Vertical Alignment”: MVA, PVA, Super PVA, ASVA itp. Różnice między tymi technologiami dotyczą głównie nazwy i producenta. Początkowo matryce tego typu zostały opracowane jako kompromis między IPS (wysokiej jakości, jednak drogą i wolną) a TN-film (szybką, niedrogą, jednak skromną pod względem jakości obrazu). W rezultacie ekrany *VA okazały się tańsze niż IPS i bardziej zaawansowane niż TN-film - mają dobre odwzorowanie kolorów, głęboką czerń i szerokie kąty widzenia. Jednocześnie należy zauważyć, że balans kolorów obrazu na takim wyświetlaczu zmienia się nieco wraz ze zmianą kąta widzenia. Utrudnia to stosowanie matryc *VA w profesjonalnych pracach z kolorem. Ogólnie ta opcja jest przeznaczona głównie dla tych, którzy nie potrzebują idealnej dokładności odwzorowania kolorów, a jednocześnie chcą widzieć jasny i kolorowy obraz.

— OLED. Matryce oparte na tzw. organicznych diodach elektroluminescencyjnych. Kluczową cechą takich wyświetlaczy jest to, że w nich każdy piksel sam jest źródłem światła (w odróżnieniu od klasycznych ekranów LCD, w których podświetlenie jest wykonywane osobno). Ta zasada konstrukcyjna w połączeniu z szeregiem innych rozwiązań zapewnia doskonałą jasność, kontrast i odwzorowanie kolorów, bogatą czerń, najszersze kąty widzenia oraz niewielką grubość samych ekranów. Z drugiej strony, matryce OLED do laptopów w większości okazują się dość drogie i „żarłoczne” pod względem zużycia energii, a także zużywają się nierównomiernie: im częściej i jaśniej piksel się świeci, tym szybciej traci swoje właściwości (jednak zjawisko to staje się zauważalne dopiero po kilku latach intensywnego użytkowania). Ponadto z wielu powodów takie ekrany są uważane za nieodpowiednie do stosowania w grach. Wobec tego matryce tego typu są obecnie rzadko spotykane - głównie w wybranych laptopach klasy high-end zaprojektowanych do profesjonalnej pracy z kolorem i posiadających odpowiednie funkcje, takie jak obsługa HDR, rozbudowana przestrzeń barw i/lub certyfikacja Pantone / CalMAN (patrz poniżej ).

— AMOLED. Typ matryc na organicznych diodach elektroluminescencyjnych, stworzony przez firmę Samsung (jednak jest też używany przez innych producentów). Pod względem głównych cech zbliżony jest do innych typów matryc OLED (patrz wyżej): z jednej strony pozwala na uzyskanie doskonałej jakości obrazu, z drugiej jest drogi i nierównomiernie się zużywa. Jednocześnie ekrany AMOLED mają jeszcze bardziej zaawansowaną wydajność odwzorowania kolorów w połączeniu z lepszą optymalizacją zużycia energii. A niskie rozpowszechnienie tej technologii wynika głównie z tego, że została pierwotnie stworzona dla smartfonów i dopiero niedawno (od 2020 roku) zaczęła być używana w laptopach.

— MiniLED. System podświetlenia ekranu na podłożu z miniaturowych diod LED o wielkości około 100-200 mikronów (µm). Na tej samej płaszczyźnie wyświetlacza udało się kilkukrotnie zwiększyć liczbę diod, a ich macierz rozmieszczono bezpośrednio za samą matrycą. Główną zaletą technologii miniLED można nazwać dużą liczbę stref lokalnego zaciemniania, co w sumie daje lepszą jasność, kontrast i bardziej nasycone kolory z głęboką czernią. Ekrany MiniLED uwalniają potencjał technologii High Dynamic Range (HDR), są odpowiednie dla grafików i twórców treści cyfrowych.

— QLED. Matryce „kropek kwantowych” z przeprojektowanym systemem podświetlenia LED. W szczególności przewiduje zastąpienie wielowarstwowych filtrów barwnych specjalną cienkowarstwową powłoką nanocząstek. Zamiast tradycyjnych białych diod LED panele QLED wykorzystują niebieskie diody LED. W rezultacie kompleks konstruktywnych innowacji pozwala osiągnąć wyższy próg jasności, nasycenia kolorów, ogólną poprawę jakości odwzorowania kolorów, przy jednoczesnym zmniejszeniu grubości ekranu i zmniejszeniu zużycia energii. Druga strona medalu matryc QLED — nietani koszt.

PLS. Typ matrycy opracowany jako alternatywa dla opisanego powyżej IPS i według niektórych doniesień jest jedną z jego modyfikacji. Takie matryce charakteryzują się również wysoką jakością odwzorowania kolorów i dobrą jasnością; ponadto zalety PLS to dobra przydatność do ekranów o wysokiej rozdzielczości (ze względu na dużą gęstość pikseli), a także niższy koszt niż większości modyfikacji IPS oraz niskie zużycie energii. Jednocześnie szybkość reakcji takich ekranów nie jest zbyt duża.

— LTPS. Zaawansowany typ matryc TFT oparty na tzw. niskotemperaturowym krzemie polikrystalicznym. Takie matryce mają wysoką jakość odwzorowania kolorów, a także świetnie sprawdzają się w ekranach o dużej gęstości pikseli - innymi słowy, mogą służyć do tworzenia małych wyświetlaczy o bardzo wysokiej rozdzielczości. Kolejną zaletą jest to, że część elektroniki sterującej można wbudować bezpośrednio w matrycę, zmniejszając całkowitą grubość ekranu. Z drugiej strony matryce LTPS są trudne w produkcji i drogie, dlatego spotyka się je głównie w laptopach klasy premium.

— IGZO. Technologia konstruowania wyświetlaczy LCD z wykorzystaniem materiału półprzewodnikowego na bazie tlenków indu, galu i cynku (w odróżnieniu od bardziej tradycyjnych opcji opartych na amorficznym krzemie). Technologia ta zapewnia szybki czas reakcji, niskie zużycie energii i bardzo wysoką jakość odwzorowania kolorów; ponadto osiąga wysoką gęstość pikseli, dzięki czemu dobrze nadaje się do ekranów o ultra wysokiej rozdzielczości. Jednak na razie takie wyświetlacze w laptopach są niezwykle rzadkie. Tłumaczy się to zarówno wysokim kosztem, jak i faktem, że do produkcji matryc IGZO używa się dość rzadkich metali, co utrudnia produkcję na dużą skalę.

Seria

Każda seria łączy w sobie układy, które są podobne pod względem ogólnego poziomu, przeznaczenia, a często także indywidualnych cech szczególnych. Jednocześnie większość serii zawiera procesory kilku generacji na raz, które mogą się znacznie różnić pod względem ich rzeczywistych właściwości. Warto zauważyć, że do niedawna w laptopach instalowano wyłącznie procesory firmy AMD lub Intel – do czasu, gdy w 2020 roku firma Apple wprowadziła swój własny układ Apple M1 (z odświeżonymi wersjami Apple M1 Pro i Apple M1 Max), Apple M2 (2022 rok) z wydajnymi układami M2 Pro, M2 Max i Apple M3, M3 Pro, M3 Max (2023 rok). Następnie na arenę wkroczył Qualcomm ze swoimi procesorami Snapdragon.

Aktualnie w laptopach występują głównie następujące serie:

AMD Ryzen 3. Najtańsza seria układów AMD z rodziny Ryzen (Ryzen 3, Ryzen 5, Ryzen 7 i Ryzen 9) wykorzystujących mikroarchitekturę Zen. Pod względem ogó...lnej konstrukcji Ryzen 3 są podobne do swoich "starszych braci", ale połowa rdzeni obliczeniowych jest w nich dezaktywowana. Jest jednak dość zaawansowana i można ją znaleźć nawet w ultrabookach.

— Ryzen 5. Druga seria procesorów opartych na architekturze Zen to tańsza alternatywa dla układów Ryzen 7. Układy Ryzen 5 mają nieco skromniejsze specyfikacje (w szczególności niższą częstotliwość taktowania i, w niektórych modelach, pamięć podręczną L3). Poza tym są one całkowicie podobne do „siódemki” i są również pozycjonowane jako wysokowydajne układy do gier i stacji roboczych. Szczegółowe informacje można znaleźć w „Ryzen 7” poniżej.

— Ryzen 7. Pierwsza seria procesorów firmy AMD opartych na mikroarchitekturze Zen. Została wprowadzona w marcu 2017 roku. Ogólnie rzecz biorąc, układy Ryzen (wszystkie serie) są sprzedawane jako zaawansowane rozwiązania dla graczy, programistów, grafików i edytorów wideo. Jedną z głównych różnic między Zen a poprzednimi mikroarchitekturami jest zastosowanie współbieżnej wielowątkowości, co znacznie zwiększyło liczbę operacji na sekundę przy tej samej częstotliwości taktowania. Ponadto każdy rdzeń otrzymał własną jednostkę obliczeniową zmiennoprzecinkową, wzrosła prędkość pamięci podręcznej pierwszego poziomu, a ilość pamięci podręcznej L3 w układach Ryzen 7 wynosi nominalnie 16 MB.

— Atom. Procesory specjalnie zaprojektowane przez firmę Intel dla urządzeń mobilnych (w tym do smartfonów). Stosowane są głównie w ultrakompaktowych laptopach.

— Core M. Procesory przeznaczone dla urządzeń przenośnych (w szczególności ultrakompaktowych laptopów) i charakteryzujące się wyjątkowo niskim rozpraszaniem ciepła, pozwalającym na zastosowanie układów pasywnego chłodzenia. Zostały zaprezentowane w 2014 roku jako pierwsze seryjne układy z procesem technologicznym 14 nm.

Celeron. Najtańsza seria w aktualnej linii procesorów Intel do komputerów stacjonarnych. Jednak najnowsze generacje mają zintegrowaną grafikę.

Pentium. Niedrogie procesory do komputerów stacjonarnych firmy Intel, nieco przewyższające Celerona pod względem specyfikacji, jednak nieco gorsze od Core i3. Posiadają również wbudowaną grafikę.

Processor. Linia procesorów klasy podstawowej, która w obecnej hierarchii Intela poprzedza rodzinę Core i3. Takie chipsety spotyka się w laptopach klasy podstawowej przeznaczonych do codziennego użytku domowego lub biurowego, a także do niewymagających gier.

Intel Core i3 / Core 3. Seria procesorów klasy podstawowej i średniej, najbardziej budżetowa w rodzinie Core. Jednak pod względem specyfikacji i mocy obliczeniowej procesory z tej linii są lepsze od serii Pentium i Celeron (patrz wyżej).

Intel Core i5 / Core 5. Linia procesorów średniej klasy — zarówno ogółem, jak i jak na standardy rodziny Core w szczególności. Najczęściej procesory serii zawierają od 4 do 10 rdzeni i pod względem wydajności plasują się pomiędzy stosunkowo niedrogim i3 (Core 3) a potężnym i7 (Core 7).

Intel Core i7 / Core 7. Seria wysokowydajnych procesorów od Intel. Przed pojawieniem się serii i9 była najbardziej zaawansowaną w rodzinie Core, ale potem straciła palmę pierwszeństwa na rzecz „dziewiątki”. Chipy Core 7 mają co najmniej 4 rdzenie i zintegrowaną grafikę.

Core i9. Najwyższej klasy procesory wypuszczone w 2017 roku; najmocniejsza linia procesorów do laptopów klasy konsumenckiej na moment jej wprowadzenia, przewyższająca chipy Core i7 pod tym względem. Mają od 6 rdzeni i dużą pamięć podręczną trzeciego poziomu.

Core Ultra 5. Transformacja popularnej serii procesorów mobilnych ze średniej półki Intel Core i5, która otrzymała dopisek Ultra od końca 2023 roku – kiedy zadebiutowała generacja chipsetów Meteor Lake. Główną cechą procesorów Core Ultra 5 jest osobny NPU, który daje przewagę podczas pracy z AI.

Core Ultra 7. Pre-topowa seria wysokowydajnych procesorów mobilnych firmy Intel, która pod koniec 2023 roku zastąpiła rodzinę Core i7 (wraz z pojawieniem się nowej generacji chipsetów Meteor Lake). Koprocesor neuronowy odpowiedzialny za przyspieszanie działania algorytmów sztucznej inteligencji stał się obowiązkowym atrybutem modeli Ultra.

Core Ultra 9. Linia najpotężniejszych procesorów do laptopów firmy Intel, wypuszczona na rynek pod koniec 2023 roku w celu zastąpienia rodziny Core i9. Premiera modeli Ultra miała miejsce w generacji chipsetów Meteor Lake. Charakterystyczną cechą Intel Core Ultra 9 jest obecność oddzielnej jednostki NPU poprawiającej efektywność wykorzystania modeli sztucznej inteligencji.

— Apple. Seria procesorów firmy Apple, wprowadzona w listopadzie 2020 roku wraz z następną generacją MacBooka, MacBooka Air i MacBooka Pro. W bazowych konfiguracjach procesory wyposażone są w 8 rdzeni - 4 wydajne i 4 oszczędne; te drugie, zdaniem ich twórców, zużywają 10 razy mniej energii niż te pierwsze. To, w połączeniu z pięcionanometrowym procesem technologicznym, zaowocowało bardzo wysoką energooszczędnością i jednocześnie wydajnością. Warto też zaznaczyć, że procesory z tej serii wykonane są według schematu system-on-chip: pojedynczy moduł łączy w sobie procesor, kartę graficzną, pamięć RAM (w pierwszych modelach - 8 lub 16 GB), półprzewodnikowy dysk NVMe i niektóre inne komponenty (w szczególności kontrolery Thunderbolt 4).

— Snapdragon. Procesory Snapdragon w swej istocie to mobilne rozwiązania – tradycyjnie montowane są w smartfonach i tabletach. Specjalnie dla laptopów wypuszczono oddzielne linie chipów Snapdragon (na przykład X Elite na architekturze ARM). Wiele laptopów opartych na takich procesorach ma wbudowane moduły LTE, a nawet 5G. Ich zaletą jest także wysoka energooszczędność.

Model

Konkretny model procesora zainstalowanego w laptopie, a raczej oznaczenie procesora w ramach jego serii (patrz wyżej). Znając pełną nazwę procesora (serię i model), możesz znaleźć szczegółowe dane na jego temat (aż do praktycznych recenzji) i wyjaśnić jego możliwości.

Nazwa kodowa

Nazwa kodowa procesora zainstalowanego w laptopie.

Parametr ten charakteryzuje przede wszystkim generację, do której należy procesor i zastosowaną w nim mikroarchitekturę. Jednocześnie chipy o różnych nazwach kodowych mogą należeć do tej samej mikroarchitektury/generacji; w takich przypadkach różnią się innymi parametrami - pozycjonowaniem ogólnym, przynależnością do określonej serii (patrz wyżej), obecnością/brakiem określonych funkcji itp.

Aktualnie procesory Intel mają następujące nazwy kodowe: Coffee Lake, Comet Lake, Ice Lake, Tiger Lake, Jasper Lake, Alder Lake, Raptor Lake (13 gen.), Alder Lake-N, Raptor Lake Refresh (14 gen.), Meteor Lake (Series 1), Raptor Lake (Series 1), Lunar Lake (Series 2). W przypadku AMD lista wygląda następująco: Zen 2 Renoir, Zen 2 Lucienne, Zen 3 Cezanne, Zen 3 Barcelo, Zen 3+ Rembrandt, Zen 3+ Rembrandt R..., Zen 2 Mendocino, Zen 3 Barcelo R, Zen 4 Dragon Range, Zen 4 Phoenix, Zen 4 Hawk Point, Zen 5 Strix Point. Szczegółowe dane dotyczące różnych nazw kodowych można znaleźć w specjalnych źródłach.

Liczba rdzeni

Liczba rdzeni w procesorze laptopa.

Rdzeń jest częścią procesora przeznaczoną do przetwarzania jednego strumienia instrukcji (a czasem więcej, dla takich modeli patrz „Liczba wątków”). Obecnie laptopy mogą być wyposażone w następujące procesory: 2-rdzeniowe, 4-rdzeniowe< /a>, 6-rdzeniowe, 8-rdzeniowe, 10-rdzeniowe, 12-rdzeniowe, 14-rdzeniowe.

Teoretycznie więcej rdzeni oznacza lepszą wydajność - szczególnie w przypadku równoległych zadań obliczeniowych lub podczas jednoczesnego przetwarzania wielu zadań wymagających dużej ilości zasobów. Jednak w praktyce jest to prawdą tylko „przy pozostałych warunkach równych” - to znaczy przy podobnej mikroarchitekturze, częstotliwości zegara, wielkości pamięci podręcznej i innych kluczowych parametrach. Jednocześnie współczesne procesory mogą tak bardzo różnić się tymi parametrami, że większa liczba rdzeni sama w sobie nie oznacza wyższej wydajności. Jest to szczególnie prawdziwe w przypadku układów dwu- i czterordzeniowych: procesor na poziomie mobilnym (na przykład Snapdragon, patrz „Seria procesorów”) z 4 rdzeniami może mieć gorsze możliwości niż dwurdzeniowy układ z serii komputerów stacjonarnych (taki jak Core i3 lub i5..., które są często używane w laptopach uniwersalnych o „optymalnych” specyfikacjach do różnych zadań). Dlatego oceniając procesory z 2 lub 4 rdzeniami, należy przede wszystkim przyjrzeć się ogólnym specyfikacjom i pozycjonowaniu. Jednak obecność sześciu, ośmiu, a nawet więcej niż dziesięciu rdzeni jest prawie na pewno oznaką potężnego procesora wysokiej jakości; taki sprzęt jest typowy głównie dla zaawansowanych laptopów gamingowych i profesjonalnych.

Liczba wątków

Liczba wątków obsługiwanych przez procesor laptopa.

Wątek to sekwencja instrukcji wykonywanych przez procesor. Początkowo każdy rdzeń procesora był przeznaczony dla jednej takiej sekwencji, a liczba wątków była równa liczbie rdzeni. Jednak nowoczesne procesory coraz częściej wykorzystują technologie wielowątkowości, które pozwalają na wykonanie dwóch sekwencji poleceń przez każdy rdzeń jednocześnie. Takie technologie mają różne nazwy u różnych producentów, ale zasada ich działania jest taka sama: podczas nieuniknionych przerw w wykonaniu jednego z wątków rdzenia nie stoi bezczynnie, ale pracuje z inną sekwencją. W związku z tym całkowita liczba wątków w takich procesorach jest dwukrotnie większa niż liczba rdzeni; taki schemat pracy znacznie zwiększa wydajność (choć oczywiście wpływa również na koszty).

Częstotliwość taktowania

Częstotliwość taktowania procesora zainstalowanego w laptopie (dla procesorów wielordzeniowych częstotliwość poszczególnych rdzeni).

Teoretycznie wyższa częstotliwość taktowania ma pozytywny wpływ na wydajność, ponieważ pozwala procesorowi wykonać więcej operacji w ciągu jednostki czasu. Jednak w praktyce możliwości procesora zależą od wielu innych specyfikacji - przede wszystkim od serii, do której należy (patrz wyżej). Zdarza się nawet, że z dwóch chipów ten „wolniejszy” okazuje się wydajniejszy. Mając to na uwadze, sensowne jest porównywanie według częstotliwości taktowania tylko procesorów z tej samej serii, a najlepiej również z tej samej generacji; a laptop w całości należy oceniać na podstawie ogólnych specyfikacji systemu i testów porównawczych (patrz poniżej).

Częstotliwość TurboBoost / TurboCore

Częstotliwość taktowania procesora osiągana w trybie przetaktowania TurboBoost lub TurboCore.

Technologie Turbo Boost i Turbo Core są używane przez różnych producentów (odpowiednio Intel i AMD), ale mają tę samą zasadę działania: rozkładają obciążenie z bardziej obciążonych rdzeni procesorów na mniej obciążone, aby poprawić wydajność. Tryb przetaktowania charakteryzuje się zwiększoną częstotliwością taktowania, co w tym przypadku jest wskazane.

Aby uzyskać więcej informacji na temat częstotliwości taktowania w ogólnych zarysach, zobacz odpowiedni punkt powyżej.

Test 3DMark06

Wynik pokazany przez procesor laptopa w teście 3DMark06.

Ten test ma na celu przede wszystkim przetestowanie wydajności w grach - w szczególności zdolności procesora do obsługi zaawansowanej grafiki i elementów sztucznej inteligencji. Wyniki testu są przedstawiane w postaci punktów; im wyższa ich liczba, tym wyższa wydajność testowanego układu. Wysokie wyniki w teście 3DMark06 są szczególnie ważne w przypadku laptopów gamingowych.
Acer Aspire 3 A315-42 często porównują
HP 15-db0000 często porównują