Polska
Katalog   /   Komputery   /   Laptopy i akcesoria   /   Laptopy

Porównanie Acer Nitro 7 AN715-51 [AN715-51-72WD] vs HP Pavilion Gaming 15-dk0000 [15-DK0061UR 7PY66EA]

Dodaj do porównania
Acer Nitro 7 AN715-51 (AN715-51-72WD)
HP Pavilion Gaming 15-dk0000 (15-DK0061UR 7PY66EA)
Acer Nitro 7 AN715-51 [AN715-51-72WD]HP Pavilion Gaming 15-dk0000 [15-DK0061UR 7PY66EA]
od 5 928 zł
Produkt jest niedostępny
od 5 042 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajlaptoplaptop
Wyświetlacz
Przekątna ekranu15.6 "15.6 "
Rodzaj matrycyIPSIPS
Powłoka ekranumatowaantyrefleksyjna
Rozdzielczość ekranu1920x1080 (16:9)1920x1080 (16:9)
Częstotliwość odświeżania60 Hz144 Hz
Jasność300 nity
Przestrzeń barw (NTSC)72 %
Procesor
SeriaCore i7Core i7
Model9750H9750H
Nazwa kodowaCoffee Lake (9th Gen)Coffee Lake (9th Gen)
Liczba rdzeni66
Liczba wątków12 threads12 threads
Częstotliwość taktowania2.6 GHz2.6 GHz
Częstotliwość TurboBoost / TurboCore4.5 GHz4.5 GHz
Test 3DMark0610652 punkty(ów)10792 punkty(ów)
Test Passmark CPU Mark13747 punkty(ów)13696 punkty(ów)
Test SuperPI 1M8.63 s8.35 s
Pamięć RAM
Pojemność pamięci16 GB16 GB
Maksymalna obsługiwana ilość pamięci RAM32 GB32 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania pamięci2666 MHz2666 MHz
Liczba gniazd pamięci22
Karta graficzna
Rodzaj karty graficznejdedykowanadedykowana
Seria karty graficznejNVIDIA GeForceNVIDIA GeForce
Model karty graficznejGTX 1660 TiGTX 1660 Ti
Pamięć karty graficznej6 GB6 GB
Rodzaj pamięciGDDR6GDDR6
Obsługa VR
Test 3DMark0638153 punkty(ów)38154 punkty(ów)
Test 3DMark Vantage P49309 punkty(ów)49309 punkty(ów)
Dysk
Rodzaj dyskuHDD+SSD M.2SSD M.2 NVMe
Pojemność dysku1000 GB512 GB
Pojemność drugiego dysku256 GB
Interfejs dysku SSD M.2PCI-E 3.0
Rozmiar dysku M.222x80 mm
Dodatkowy slot 2.5"
Złącza i interfejsy
Złącza
HDMI
v 2.0
HDMI
 
Czytnik kart pamięci
 /SD/
USB 2.01 szt.
USB 3.2 gen12 szt.3 szt.
USB C 3.2 gen11 szt.
USB C 3.2 gen21 szt.
Obsługa Alternate Mode
LAN (RJ-45)1 Gb/s1 Gb/s
Multimedia
Kamera internetowa1280x720 (HD)1280x720 (HD)
Zaślepka na kamerę
Liczba głośników2 szt.2 szt.
Marka głośnikówBang & Olufsen
Zabezpieczenia
blokada kensington / noble
 
Klawiatura
Podświetlenieczerwonezielone
Konstrukcja klawiszywyspowewyspowe
Klawiatura numeryczna
Sterowanietouchpadtouchpad
Akumulator
Pojemność baterii3815 mAh4323 mAh
Pojemność baterii59 W*h53 W*h
Napięcie baterii15.4 V11.55 V
Maks. czas pracy8 h8.5 h
Zasilanie z USB C (Power Delivery)
Szybkie ładowanie
Czas ładowania50% w 45 minut
Dane ogólne
Preinstalowany system operacyjnyLinuxDOS
Materiał obudowyaluminium / tworzywo sztucznealuminium / tworzywo sztuczne
Wymiary (SxGxW)363x260x23 mm360x256x23 mm
Waga2.5 kg2.28 kg
Kolor obudowy
Data dodania do E-Katalogpaździernik 2019wrzesień 2019

Powłoka ekranu

- Błyszcząca. Błyszcząca powierzchnia poprawia ogólną jakość obrazu: przy pozostałych warunkach równych obraz na takim ekranie wygląda jaśniej i bardziej kolorowo niż na matowym. Z drugiej strony na takiej powierzchni bardzo zauważalne są zanieczyszczenia, a w jasnym otoczeniu pojawia się na niej dużo odblasków, które mogą mocno przeszkadzać w oglądaniu. Dlatego zamiast klasycznego połysku w laptopach coraz częściej stosuje się antyrefleksyjną wersję takiej powłoki (patrz poniżej). Niemniej jednak ta opcja nadal nie traci na popularności: kosztuje nieco mniej niż powłoka antyrefleksyjna, a przy miękkim, stosunkowo słabym oświetleniu może nawet zapewnić przyjemniejszy dla oka obraz.

- Matowa. Matowa powłoka jest niedroga i nie powoduje odblasków, nawet przy dość jasnym oświetleniu. Z drugiej strony obraz na takim ekranie okazuje się zauważalnie ciemniejszy niż na podobnym błyszczącym wyświetlaczu. Jednak ten szczegół można skompensować różnymi rozwiązaniami konstrukcyjnymi (przede wszystkim dobrym zapasem jasności); więc tę opcję można znaleźć we wszystkich kategoriach nowoczesnych laptopów - od niedrogich modeli do pracy z dokumentami po najlepsze konfiguracje do gier.

- Błyszcząca (antyrefleksyjna). Odmiana opisanej powyżej błyszczącej powłoki, mająca na celu ograniczenie odblasków z zewnętrznych źródeł światła. Takie ekrany naprawdę odbijają zauważalni...e mniej niż tradycyjne błyszczące (lub nawet nie dają odblasków); jednocześnie pod względem jakości obrazu są co najmniej lepsze od matowych. Więc to właśnie ten rodzaj powłoki jest obecnie najbardziej popularny.

Częstotliwość odświeżania

Liczba klatek na sekundę obsługiwana przez ekran laptopa. W rzeczywistości w tym przypadku chodzi o maksymalną częstotliwość; rzeczywista częstotliwość odświeżania może być niższa od tej wartości, w zależności od wyświetlanej treści - ale nie wyższa.

W teorii im wyższa liczba klatek na sekundę, tym płynniej będzie wyglądał ruch na ekranie, tym mniej rozmyte będą poruszające się obiekty. W praktyce sytuacja jest taka, że nawet stosunkowo skromne współczesne laptopy wyposażone są w matryce o częstotliwości odświeżania 60 Hz - w sumie to całkiem wystarcza dla ludzkiego oka, gdyż dalszy wzrost prędkości (90 Hz i więcej) nie daje zauważalnej poprawy widocznego obrazu. Jednak w modelach gamingowych i multimedialnych o wysokiej klasie przeznaczonych dla wymagających użytkowników są też wyższe wartości — 120 Hz, 144 Hz, 165 Hz lub nawet wyższe, mianowicie 240 Hz i 300 Hz.

Jasność

Maksymalna jasność, jaką może zapewnić ekran laptopa.

Im jaśniejsze światło otoczenia, tym jaśniejszy musi być ekran laptopa, w przeciwnym razie obraz na nim może być trudny do odczytania. I odwrotnie, przy słabym świetle otoczenia wysoka jasność nie jest konieczna - powoduje duże obciążenie oczu (jednak w tym przypadku wszystkie współczesne laptopy są wyposażone w kontrolę jasności). W związku z tym im wyższy wskaźnik ten, tym bardziej uniwersalny jest ekran, tym szerszy jest zakres warunków, w których można go efektywnie używać. Wadą tych korzyści jest wzrost ceny i zużycia energii.

Jeśli chodzi o konkretne wartości, wiele współczesnych laptopów ma jasność 250 – 300 cd/m2 lub nawet mniej. To wystarcza do pracy przy sztucznym oświetleniu o średniej intensywności, lecz przy jasnym naturalnym świetle mogą już wystąpić problemy z widocznością. Do użytku przy słonecznej pogodzie (szczególnie na zewnątrz) pożądany jest zapas jasności co najmniej 300 – 350 cd/m2. A w najbardziej zaawansowanych modelach parametr ten może wynosić 350 – 400 cd/m2, 401 – 500 cd/m2 a nawet ponad 500 cd/m2.

Przestrzeń barw (NTSC)

Przestrzeń barw matrycy laptopa zgodnie z modelem przestrzeni barw NTSC.

Przestrzeń barw opisuje zakres barw, które można wyświetlić na ekranie. Podaje się w procentach, ale nie w odniesieniu do całego widma widocznych barw, ale w odniesieniu do warunkowej przestrzeni barw (modelu przestrzeni barw). Wynika to z faktu, że żaden nowoczesny ekran nie jest w stanie wyświetlić wszystkich barw widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości ekranu, tym lepsze jest jego odwzorowanie barw.

W szczególności NTSC jest jednym z pierwszych modeli przestrzeni barw stworzonych w 1953 roku dla telewizji kolorowej. Nie jest używany przy produkcji nowoczesnych matryc LCD, ale służy do ich opisu i porównania. NTSC obejmuje szerszy zakres barw niż standardowo używany w technologii komputerowej sRGB; dlatego nawet niewielka liczba procentów w tym przypadku odpowiada dość szerokiej przestrzeni. Na przykład wartość 72% i więcej według NTSC już uważana jest za dobry wskaźnik do wykorzystania w projektowaniu i grafice. W tym samym czasie te same liczby NTSC na różnych ekranach mogą odpowiadać różnym wartościom sRGB; więc jeśli dokładne odwzorowanie barw jest dla użytkownika kluczowe, szczegóły te należy wyjaśnić przed zakupem.

Warto też zaznaczyć, że wśród poszczególnych monitorów łatwiej jest znaleźć ekran z szeroką przestrzenią barw; jest też tańszy niż laptop o podobnej specyfikacji wyświ...etlacza. Dlatego wybór laptopa z wysokiej klasy ekranem ma sens głównie wtedy, gdy przenośność jest nie mniej ważna niż wysokiej jakości odwzorowanie barw.

Test 3DMark06

Wynik pokazany przez procesor laptopa w teście 3DMark06.

Ten test ma na celu przede wszystkim przetestowanie wydajności w grach - w szczególności zdolności procesora do obsługi zaawansowanej grafiki i elementów sztucznej inteligencji. Wyniki testu są przedstawiane w postaci punktów; im wyższa ich liczba, tym wyższa wydajność testowanego układu. Wysokie wyniki w teście 3DMark06 są szczególnie ważne w przypadku laptopów gamingowych.

Test Passmark CPU Mark

Wynik pokazany przez procesor laptopa w teście Passmark CPU Mark.

Passmark CPU Mark to kompleksowy test, bardziej szczegółowy i niezawodny niż popularny 3DMark06 (patrz wyżej). Sprawdza nie tylko możliwości gier procesora, ale także jego wydajność w innych trybach, na podstawie czego wyświetla ogólny wynik; zgodnie z tym wynikiem można dość rzetelnie ocenić procesor jako całość (im więcej punktów, tym wyższa wydajność).

Test SuperPI 1M

Wynik pokazany przez procesor laptopa w teście SuperPI 1M.

Istotą tego testu jest obliczenie liczby „pi” do milionowego miejsca po przecinku. Czas potrzebny do takiego obliczenia jest ostatecznym wynikiem. Odpowiednio, im mocniejszy procesor, tym niższa liczba będzie w rezultacie (w ten sposób SuperPI 1M różni się zasadniczo od wielu innych testów).

Test 3DMark06

Wynik pokazany przez kartę graficzną laptopa w teście 3DMark06.

Ten test przede wszystkim określa, jak dobrze karta graficzna radzi sobie z intensywnymi obciążeniami, w szczególności ze szczegółową grafiką 3D. Wynik testu jest podany w punktach; im więcej punktów - tym wyższa wydajność karty graficznej. Wysokie wyniki w benchmarku 3DMark06 są szczególnie ważne w przypadku laptopów gamingowych i zaawansowanych stacji roboczych. Trudno jednak nazwać je wiarygodnymi, gdyż pomiary są dokonywane na kartach graficznych o różnych TDP i podawany jest ogólny średni wynik. Zatem Twój laptop może uzyskać zarówno wynik wyższy od podanego, jak i mniejszy — wszystko zależy od TDP zainstalowanej karty graficznej.

Rodzaj dysku

Rodzaj dysku standardowo zainstalowanego w laptopie.

Klasyczne dyski twarde (HDD) we współczesnych laptopach są dość rzadkie w czystej postaci. Zamiast tego, półprzewodnikowe moduły SSD stają się coraz bardziej powszechne, w tym w kombinacjach HDD+SSD i SSHD+SSD. Także warto zaznaczyć, że wśród takich modułów bardzo powszechne są dyski SSD M.2, które ponadto mogą obsługiwać NVMe i/lub należą do zaawansowanej serii Intel Optane. Oto główne cechy tych opcji w różnych kombinacjach (a także inne opcje dysków, które można znaleźć we współczesnych laptopach):

— HDD. Klasyczny dysk twardy wykorzystujący nośnik magnetyczny, nie uzupełniany przez żaden inny rodzaj pamięci. Dyski HDD wyróżniają się niskim kosztem w przeliczeniu na gigabajt pojemności, co umożliwia tworzenie bardzo pojemnych i jednocześnie dość niedrogich nośników. Z drugiej strony takie pamięci są uważane za mniej doskonałe niż dyski SSD: w szczególności są raczej powolne, a poza tym nie są odporne na uderzenia i wstrząsy (to ostatnie jest szczególnie ważne biorąc pod uwagę fakt, że laptopy są pierwotnie urządzeniami przenośnymi). Dlatego ta opcja w naszych czasach jest dość rzadka, głównie wśród niedrogich konfiguracji.

— SSD. Pamięć półprzewodnikowa oparta na technologii Flash. Gene...ralnie dyski tego typu są znacznie droższe niż dyski HDD o tej samej wielkości, ale mają nad nimi szereg zalet - przede wszystkim jest to duża prędkość działania, a także zdolność do bezproblemowego wytrzymywania dość silnych wstrząsów i wibracji. Warto podkreślić jednak, że w tym przypadku chodzi o dyski SSD w oryginalnym formacie, które nie wykorzystują interfejsu M.2, nie należą do serii Optane i nie są modułami eMMC ani UFS (opis tych wszystkich funkcji znajduje się poniżej). Jest to najprostsza i najłatwiej dostępna forma pamięci flash - w szczególności najczęściej wykorzystuje ona połączenie SATA, co nie pozwala na pełne wykorzystanie potencjału takiej pamięci. Z drugiej strony, nawet „zwykłe” moduły SSD nadal działają dużo szybciej niż dyski HDD i są dużo tańsze niż bardziej zaawansowane rozwiązania.

— SSD M.2. Moduł SSD wykorzystujący złącze M.2. Ogólne informacje na temat dysków SSD można znaleźć powyżej; a złącze M.2 zostało zaprojektowane specjalnie dla zaawansowanych, ale niewielkich komponentów wewnętrznych, w tym dysków półprzewodnikowych. Jedną z cech takiego połączenia jest to, że najczęściej odbywa się ono zgodnie ze standardem PCI-E - zapewnia to dużą prędkość transmisji danych (do 8 GB/s, potencjalnie więcej) i pozwala na wykorzystanie wszystkich możliwości dysków SSD. Jednocześnie istnieją moduły M.2 pracujące na starszym interfejsie SATA - jego prędkość nie przekracza 600 MB/s, ale taki sprzęt kosztuje mniej niż moduły z M.2 PCI-E. Aby uzyskać więcej informacji, zobacz „Interfejs dysku M.2” - właśnie ten punkt umożliwia ocenę konkretnych możliwości dysku SSD M.2.

— SSD M.2 Optane. Dysk SSD M.2 (patrz wyżej) należący do serii Intel Optane. Główną cechą takich modułów jest wykorzystanie technologii 3D Xpoint - różni się ona znacznie od NAND, na której budowano większość konwencjonalnych modułów SSD. W szczególności 3D Xpoint pozwala na dostęp do danych na poziomie poszczególnych komórek i obejście się bez dodatkowych operacji, co przyspiesza pracę i zmniejsza opóźnienia. Co więcej, taka pamięć jest znacznie trwalsza. Jej główną wadą jest dość wysoki koszt. Warto też zwrócić uwagę, że przewaga Optane nad bardziej tradycyjnymi modułami SSD jest najbardziej widoczna przy tzw. „płytkiej głębokości kolejki” - czyli przy niewielkim obciążeniu dysku, gdy jednocześnie odbiera on niewielką liczbę żądań. Jednak większość codziennych zadań (praca z dokumentami, surfowanie po sieci, stosunkowo mało wymagające gry) realizowana jest w tym trybie, więc ten szczegół można przypisać zaletom - zwłaszcza, że przewaga Optane, choć maleje, nie znika wraz ze wzrostem obciążenia.

— Dysk SSD M.2 NVMe. NVMe to standard przesyłania danych zaprojektowany specjalnie dla SSD. Wykorzystuje magistralę PCI-E i pozwala maksymalnie ujawnić potencjał tej pamięci, znacznie zwiększając prędkość wymiany danych. Może to być zarówno jedyny dysk, jak i dodatek do dysku HDD lub SSHD. Początkowo uważano, że NVMe ma sens stosować głównie w zestawach komputerowych o wysokiej wydajności, zwłaszcza w grach. Jednak rozwój i niski koszt produkcji sprawiły, że ​​takie dyski spotykane są także w prostszych laptopach.

— HDD+SSD. Obecność dwóch oddzielnych dysków w laptopie - HDD i zwykłego dysku SSD (nie M.2, nie Optane). Zalety i wady tego typu dysków opisano szczegółowo powyżej; a ich połączenie w jeden system pozwala łączyć zalety i częściowo kompensować wady. W takich przypadkach dysk SSD jest zwykle o zauważalnie mniejszej pojemności niż dysk twardy i służy do przechowywania danych, dla których ważna jest wysoka prędkość dostępu: system operacyjny, programy operacyjne itp. Z kolei wygodnie jest na dysku twardym przechowywać informacje o znacznej pojemności, a jednocześnie nie wymagające specjalnej prędkości dostępu; klasycznym przykładem są pliki multimedialne i dokumenty. Ponadto moduł półprzewodnikowy może służyć jako szybka pamięć podręczna dysku twardego - podobnie jak dysk SSHD opisany poniżej. Zwykle wymaga to jednak specjalnych ustawień oprogramowania, podczas gdy tryb „dwóch oddzielnych dysków” jest zwykle dostępny domyślnie.
Warto również zauważyć, że we współczesnych laptopach pakiety HDD są coraz częściej używane nie ze zwykłymi dyskami SSD, ale z bardziej zaawansowanymi modułami M.2 (w tym M.2 Optane). Niemniej jednak ta opcja jest nadal używana - głównie wśród stosunkowo niedrogich konfiguracji.

— SSHD. Dysk typu combo, który łączy dysk twardy (HDD) i moduł półprzewodnikowy (SSD). Różni się od opisanej powyżej kombinacji HDD+SSD pod dwoma względami. Po pierwsze, oba nośniki są w tej samej obudowie i są postrzegane przez system jako całość. Po drugie, przeważnie dysk twardy jest używany bezpośrednio do przechowywania danych, a pamięć SSD pełni rolę usługową - działa jako szybka pamięć podręczna dla dysku twardego. W praktyce wygląda to tak: dane z dysku twardego, do którego użytkownik najczęściej uzyskuje dostęp, są kopiowane na dysk SSD i przy kolejnym dostępie ładowane są z dysku SSD, a nie z HDD. Pozwala to znacznie przyspieszyć pracę w porównaniu z konwencjonalnymi dyskami twardymi. Co prawda pod względem wydajności takie „hybrydy” są nadal gorsze nawet od konwencjonalnych dysków SSD, nie wspominając o rozwiązaniach M.2 i Optane - ale kosztują znacznie mniej.

— HDD+SSD M.2. Połączenie klasycznego dysku twardego z półprzewodnikowym modułem SSD przy użyciu złącza M.2. Aby uzyskać więcej informacji na temat tej kombinacji, zobacz „HDD+SSD”: prawie wszystko, co tam podano, ma również znaczenie dla tego przypadku, chyba, że dyski SSD M.2 są w stanie zapewnić wyższą prędkość operacyjną (patrz również powyżej - w punkcie „SSD M.2”).

— HDD+Optane M.2. Połączenie klasycznego dysku twardego z półprzewodnikowym modułem SSD, który wykorzystuje złącze M.2 i należy do serii Intel Optane. Ta kombinacja jest ogólnie podobna do pakietu „HDD+SSD” (patrz wyżej), chyba że możliwości dysków Optane są bardziej zaawansowane (patrz także powyżej - „SSD M.2 Optane”).

— SSHD+SSD M.2. Połączenie dysku SSD z półprzewodnikowym modułem SSD M.2. Ogólnie jest podobny do kombinacji „HDD + SSD M.2” (patrz wyżej), z tym, że zamiast konwencjonalnego dysku twardego używany jest bardziej zaawansowany i szybki dysk hybrydowy (patrz również powyżej). To dodatkowo zwiększa koszt, ale poprawia wydajność.

— eMMC. Rodzaj dysków półprzewodnikowych, pierwotnie używany jako wbudowana pamięć trwała w smartfonach i tabletach, ale ostatnio instalowany w laptopach. Różni się od SSD (patrz wyżej) z jednej strony niższym kosztem i dobrą energooszczędnością, z drugiej strony mniejszą prędkością i niezawodnością. W związku z tym eMMC występuje obecnie głównie wśród laptopów konwertowalnych i laptopów-tabletów (patrz „Rodzaj”) - dla nich niski pobór mocy jest ważniejszy niż maksymalna wydajność. Należy również pamiętać, że takie dyski są zwykle wbudowane i nie wymagają wymiany.

— HDD+eMMC. Połączenie klasycznego dysku twardego z modułem półprzewodnikowym eMMC. Cechy każdego typu dysków zostały szczegółowo opisane powyżej, a ich kombinacja stosowana jest głównie w urządzeniach typu „laptop-tablet” (patrz „Rodzaj”). W tym przypadku dysk eMMC jest instalowany w górnej części urządzenia i służy do przechowywania systemu operacyjnego oraz najważniejszych danych, do których potrzebuje się stałego dostępu; a dysk twardy znajdujący się w dolnej połowie służy jako dodatkowa pamięć dla dużych ilości danych (na przykład kolekcji filmów).

— SSD M.2+eMMC. Połączenie w jednym laptopie dwóch modułów półprzewodnikowych - SSD M.2 i eMMC. Aby uzyskać więcej informacji na temat cech obu typów pamięci, zobacz powyżej, a ich łączenie jest raczej egzotyczną opcją. Służy głównie do zwiększania całkowitej wielkości pamięci półprzewodnikowej bez znacznego zwiększania kosztów (warto przypomnieć, że eMMC jest tańsze niż dysk SSD M.2 o tym samym rozmiarze). Ponadto, jeśli moduł eMMC jest zwykle wbudowany, to dysk SSD M.2 jest z definicji wymienny, a w razie potrzeby można go zastąpić innym dyskiem.

— UFS. Kolejny rodzaj pamięci półprzewodnikowej, pierwotnie przeznaczony dla smartfonów i tabletów - wraz z opisanym powyżej eMMC. Różni się od tego ostatniego zarówno wysoką wydajnością, jak i zwiększonym kosztem. Wobec tego takie dyski są niezwykle rzadkie wśród laptopów: tam, gdzie brakuje możliwości eMMC, producenci zwykle używają pełnowartościowych dysków SSD.
HP Pavilion Gaming 15-dk0000 często porównują