Ogniskowa
Ogniskowa obiektywu teleskopu.
Ogniskowa to odległość od środka optycznego obiektywu do płaszczyzny, na którą rzutowany jest obraz (ekran, film, matryca), przy której obiektyw teleskopu wytworzy najczystszy obraz. Im dłuższa ogniskowa, tym większe powiększenie może zapewnić teleskop; należy jednak pamiętać, że powiększenie jest również związane z ogniskową używanego okularu i średnicą obiektywu (więcej na ten temat poniżej). Ale to, na co parametr ten bezpośrednio wpływa, to wymiary urządzenia, a dokładniej długość rurki. W przypadku refraktorów i większości reflektorów (patrz „Konstrukcja”) długość teleskopu w przybliżeniu odpowiada jego ogniskowej, ale w modelach z lustrzanym obiektywem może być 3-4 razy krótsza od ogniskowej.
Zauważ też, że ogniskowa jest uwzględniana w niektórych wzorach charakteryzujących jakość teleskopu. Na przykład uważa się, że dla dobrej widoczności przez najprostszy rodzaj teleskopu ogniotrwałego - tzw. achromat - konieczne jest, aby jego ogniskowa była nie mniejsza niż D^2/10 (kwadrat średnicy obiektywu podzielony przez 10), a lepiej - nie mniej niż D^2/9.
Apertura
Stosunek apertury teleskopu charakteryzuje całkowitą ilość światła „przechwyconego” przez system i przekazanego do oka obserwatora. Pod względem liczb wartość przysłony to stosunek średnicy obiektywu do ogniskowej (patrz wyżej): na przykład w przypadku systemu z przysłoną 100 mm i ogniskową 1000 mm wartość przysłony będzie wynosił 100/1000 = 1/10. Wskaźnik ten jest również nazywany „aperturą względną”.
Przy wyborze według przesłony należy przede wszystkim wziąć pod uwagę cele, do których planowana jest luneta. Duża apertura względna jest bardzo wygodna w astrofotografii, ponieważ przepuszcza dużą ilość światła i umożliwia pracę przy dłuższych czasach otwarcia migawki. Ale do obserwacji wizualnych nie jest wymagany wysoki współczynnik apertury - wręcz przeciwnie, teleskopy o dłuższym ognisku (a tym samym o mniejszej aperturze) charakteryzują się niższym poziomem aberracji i umożliwiają stosowanie wygodniejszych okularów do obserwacji. Zwracamy również uwagę, że duża apertura wymaga zastosowania dużych obiektywów, co odpowiednio wpływa na wielkość, wagę i cenę teleskopu.
Okulary
W tym punkcie wyszczególniono okulary znajdujące się w standardowym zakresie dostawy teleskopu, a dokładniej ogniskowe tych okularów.
Mając te dane i znając ogniskową teleskopu (patrz wyżej), można określić powiększenia, jakie urządzenie może dać po wyjęciu z pudełka. W przypadku teleskopu bez soczewek Barlowa (patrz niżej) i innych dodatkowych elementów o podobnym przeznaczeniu, powiększenie będzie równe ogniskowej obiektywu podzielonej przez ogniskową okularu. Na przykład optyka 1000 mm wyposażona w „oczy” 5 i 10 mm będzie w stanie uzyskać powiększenia 1000/5=200x i 1000/10=100x.
W przypadku braku odpowiedniego okularu w zestawie, można go zazwyczaj dokupić osobno.
Soczewka Barlowa
Krotność powiększenia soczewki Barlowa, przewidziana w teleskopie.
Taki przyrząd (z reguły jest zdejmowany) reprezentuje sobą soczewkę rozpraszającą lub układ soczewek, montowany przed okularem. W rzeczywistości
soczewka Barlowa zwiększa ogniskową teleskopu, zapewniając większy stopień powiększenia (i mniejszy kąt widzenia) przy tym samym okularze. Jednocześnie krotność powiększenia z soczewką można obliczyć mnożąc „natywne” powiększenie danego okularu przez powiększenie samej soczewki: na przykład, jeśli teleskop z okularem 10 mm zapewniał powiększenie 100x, następnie przy montażu soczewki Barlowa 3x wskaźnik ten będzie wynosić 100x3=300x. Oczywiście ten sam efekt można osiągnąć przy montażu okularu o zmniejszonej ogniskowej. Jednakże po pierwsze, taki okular nie zawsze jest dostępny w sprzedaży; po drugie, jedna soczewka Barlowa może być używana ze wszystkimi okularami, pasującymi do teleskopu, poszerzając arsenał dostępnych krotności. Możliwość ta jest szczególnie wygodna w tych przypadkach, gdy obserwator potrzebuje rozbudowanego zestawu wariantów stopnia powiększenia. Przykładowo zestaw z 4 okularów i jednej soczewki Barlowa daje 8 wariantów powiększenia, a praca z takim zestawem jest wygodniejsza niż z 8 pojedynczymi okularami.
Soczewka prostująca
Krotność soczewki prostującej, przewidzianej w teleskopie.
Bez zastosowania takiej soczewki teleskop z reguły daje odwrócony obraz obserwowanego obiektu. W obserwacjach astronomicznych i astrofotografii w większości przypadków nie jest to krytyczne, jednak w przypadku obiektów naziemnych takie położenie „obrazu” powoduje poważne niedogodności.
Soczewka prostująca zapewnia odwrócenie obrazu, dzięki czemu obserwator może zobaczyć prawdziwe (nie odwrócone, nie lustrzane) położenie obiektów w polu widzenia. Funkcja ta występuje głównie w stosunkowo prostych teleskopach o niskim współczynniku powiększenia i małym rozmiarze obiektywu - uważa się je za najbardziej odpowiednie do obserwacji naziemnych. Zwróć uwagę, że oprócz „czystych” soczewek, istnieją również układy prostujące, oparte na pryzmatach.
Jeśli chodzi o powiększenie, to jest ono bardzo małe i zwykle waha się od 1x do 1,5x - minimalizuje to wpływ na jakość obrazu (zwiększenie ogólnego stopnia powiększenia można osiągnąć innymi sposobami - np. za pomocą opisanych powyżej soczewek Barlowa) .
Zwierciadło diagonalne
Obecność zwierciadła diagonalnego w konstrukcji lub zestawie z teleskopem.
To akcesorium jest używane w połączeniu z teleskopami soczewkowymi i zwierciadlanymi (patrz „Konstrukcja”). W takich osi optycznej teleskopu; w niektórych sytuacjach – na przykład przy modelach okular znajduje się na końcu rury i jest skierowany wzdłuż obserwacji obiektów w pobliżu zenitu – takie ustawienie może być bardzo niewygodne dla obserwatora.
Zwierciadło diagonalne pozwala na skierowanie okularu pod kątem do osi optycznej, co zapewnia komfort we wspomnianych sytuacjach. Co prawda obraz zwykle okazuje się lustrzany (od prawej do lewej), jednak przy obserwacji obiektów astronomicznych trudno to nazwać poważną wadą. Zwierciadła diagonalne mogą być zarówno zdejmowane, jak i wbudowane, istnieje również możliwość zmiany kąta obrotu okularu.
Mocowanie tubusa
Sposób mocowania rurki do montażu dostarczonego w lunecie.
Obecnie stosuje się trzy główne takie metody:
pierścienie,
śruby,
płyty. Oto bardziej szczegółowy opis każdego z nich:
- Pierścienie mocujące. Para pierścieni zaciskanych śrubami montowanych na drążku do podważania. Wewnętrzna średnica pierścieni odpowiada w przybliżeniu grubości rury, a dokręcenie śrub zapewnia ciasne dopasowanie. W tym przypadku tubus teleskopu z reguły nie posiada żadnych specjalnych ograniczników i jest utrzymywany w pierścieniach wyłącznie siłą tarcia. W praktyce pozwala to, poprzez poluzowanie śrub, przesunąć rurę do przodu lub do tyłu, wybierając optymalną pozycję do konkretnej sytuacji. Trzeba tu jednak uważać: zbyt duże przemieszczenie mocowania od środka, szczególnie w refraktorach o dużej długości tubusu, może zaburzyć równowagę całej konstrukcji.
Tak czy inaczej, pierścienie są dość proste, a jednocześnie wygodne i praktyczne, a kompatybilność z nimi jest ograniczona wyłącznie średnicą rurki. W związku z tym ten konkretny rodzaj zapięcia jest obecnie najbardziej popularny. Do jego wad należy konieczność samodzielnego dobrania odpowiednio stabilnej pozycji lunety, a także dopilnowania, aby śruby były dobrze dokręcone – ich odkręcanie może doprowadzić do zsunięcia się tubusu, a nawet wypadnięcia z pierścieni.
- Płyta montażowa. W rzeczywistości mówimy o mont
...ażu na jaskółczy ogon. W tym celu na korpusie teleskopu przewidziana jest specjalna szyna, a na mocowaniu przewidziana jest platforma z rowkiem. Podczas montażu rury na uchwycie szynę wsuwa się od końca w rowek i mocuje za pomocą specjalnego urządzenia, takiego jak zatrzask lub śruba.
Jedną z kluczowych zalet płyt montażowych jest łatwość i szybkość montażu i demontażu lunety. Tak więc odkręcenie i dokręcenie pojedynczej śruby ustalającej jest łatwiejsze niż majstrowanie przy mocowaniu śrub lub pierścieniach zaciskowych - zwłaszcza, że w wielu modelach śrubę tę można skręcić ręcznie, bez specjalnego narzędzia. I nie ma co mówić o zatrzaskach. Wadę tej opcji można nazwać dokładnością jakości materiałów i dokładnością wykonania – w przeciwnym razie może pojawić się luz, który może znacząco „zrujnować życie” astronoma. Dodatkowo taki montaż ma bardzo ograniczone możliwości przesuwania teleskopu tam iz powrotem na montażu, a nawet ich nie posiada; a paski i rowki mogą różnić się kształtem i rozmiarem, co nieco utrudnia wybór mocowań innych firm.
- Śruby mocujące. Montaże z takim montażem posiadają gniazdo w kształcie litery Y, pomiędzy „rogami” których montuje się lunetę. Jednocześnie jest przymocowany do rogów z obu stron za pomocą śrub wkręcanych bezpośrednio w rurę; śruby są przewidziane dla co najmniej dwóch z każdej strony, aby rura nie mogła obracać się niezależnie wokół punktu mocowania.
Ogólnie rzecz biorąc, ta opcja mocowania jest wysoce niezawodna i wygodna w procesie użytkowania teleskopu. Śruby mocno trzymają rurę, bez luzów; kiedy są osłabione, może pojawić się ten sam luz, ale to wszystko; dodatkowo teleskop pozostanie na montażu i nie spadnie, jeśli chociaż jedna śruba pozostanie przynajmniej częściowo dokręcona. Dodatkowo punkt wpinania zazwyczaj znajduje się w obszarze środka ciężkości, co domyślnie zapewnia optymalne wyważenie i eliminuje konieczność samodzielnego odnalezienia przez użytkownika punktu wpięcia. Z drugiej strony instalowanie i usuwanie rury w tych mocowaniach jest bardziej czasochłonne i kłopotliwe niż w systemach opisanych powyżej; Rozmieszczenie otworów na śruby i gwinty montażowe zwykle różnią się w zależności od modelu, a tego typu konstrukcja zwykle nie jest wymienna.Waga całkowita
Całkowita waga całego teleskopu, wliczając montaż i statyw.
Niewielka waga jest wygodna przede wszystkim do „polowego” użytkowania i częstych ruchów z miejsca na miejsce. Natomiast minusem jest skromna wydajność, wysoki koszt, a czasem jedno i drugie. Dodatkowo podstawka niweluje wstrząsy i wibracje gorzej, co może mieć znaczenie w niektórych sytuacjach (np. jeśli punkt obserwacji znajduje się w pobliżu torów kolejowych, przez które często przejeżdżają pociągi towarowe).