Typ
Współczynnik kształtu określa przede wszystkim wewnętrzną objętość obudowy (w rezultacie - używaną do niej płytę główną, patrz „Rodzaj płyty głównej”), a także funkcje montażu. Obecnie obudowy komputerów występują w następujących głównych formach:
—
Full Tower. Pionowa obudowa jest obecnie jednym z największych współczynników kształtu do komputerów: szerokość wynosi 15-20 cm, wysokość 50-60 cm, liczba zatok z dostępem z zewnątrz może sięgać 10. Najczęściej w tym formacie produkowane są obudowy komputerów o wysokiej wydajności.
—
Ultra Tower. Dalszy rozwój i rozbudowa obudów Full Tower (patrz wyżej), oferujących jeszcze więcej miejsca na „wypełnienie”: szerokość takiej obudowy to około 25 cm, wysokość może dochodzić nawet do 70 cm, co pozwala na rozbudowane konfiguracje wewnątrz i zapewnia wystarczająco dużo wolnej przestrzeni do efektywnego chłodzenia.
—
Midi Tower. Przedstawiciel rodziny Tower (obudowy z pionowym montażem) średniej wielkości - około 45 cm wysokości i 15-20 cm szerokości, z liczbą zewnętrznych zatok od 2 do 4. Najpopularniejsze dla domowych komputerów klasy średniej.
—
Mini Tower. Najbardziej kompaktowa pionowa obudowa, o szerokości 15-20 cm i wysokości około 35 cm, ma (zazwyczaj) nie więcej niż 2 zatoki z dostępem z zewnątrz. Służy głównie do montażu komputerów biurowych, które nie wy
...magają wysokiej wydajności.
— Desktop. Obudowy przeznaczone do montażu bezpośrednio na biurku. Często mają możliwość montażu poziomego – dzięki czemu monitor można postawić na obudowie – choć zdarzają się też modele, które montuje się stricte pionowo. Rozmiar takich obudów może być praktycznie dowolny - od miniaturowych rozwiązań do płyt głównych thin mini ITX po duże obudowy do E-ATX (patrz „Rodzaj płyty głównej”). Jednak większość obudów typu „Desktop” jest stosunkowo niewielka.
— Cube Case. Obudowy sześcienne lub o podobnym kształcie. Mogą mieć różne wymiary i są przeznaczone do różnych rodzajów płyt głównych, ten punkt w każdym przypadku należy doprecyzować osobno. Tak czy inaczej, takie obudowy mają dość oryginalny wygląd, który różni się od tradycyjnych „wież” i „desktopów”.
— Dual Tower. Dość rzadka opcja — obudowa wielkością i proporcjami przypomina dwie „wieże”, ułożone obok siebie. Rozwiązania Dual Tower mają duże rozmiary i są przeznaczone głównie do wydajnych komputerów stacjonarnych (w szczególności do najwyższej klasy stacji do gier).
Zwróć uwagę, że istnieją modele, które umożliwiają zarówno montaż pionowy, jak i poziomy i mogą w rzeczywistości przekształcać się z „wieży” w „desktop” i odwrotnie. W takich przypadkach współczynnik kształtu jest wskazywany według współczynnika kształtu podanego w dokumentacji producenta lub według opisanego tam podstawowego sposobu montażu.Synchronizacja podświetlenia
Technologia synchronizacji zapewniona w podświetlanej obudowie (patrz „Typ podświetlenia”).
Sama synchronizacja pozwala „dopasować” podświetlenie obudowy do podświetlenia innych elementów systemu - płyty głównej, karty graficznej, klawiatury, myszy itp. Dzięki temu dopasowaniu wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać /wyłączać itp. Warto zauważyć, że wszystkie takie układy mają
podświetlenie RGB. Konkretne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoją własną (Mystic Light Sync dla MSI, Aura Sync dla Asus itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty jednego producenta.
Liczba zatok wewnętrznych 2,5"
Liczba
zatok wewnętrznych w formacie 2,5 cala przewidziana w konstrukcji obudowy.
Te zatoki są używane głównie do instalowania wewnętrznych dysków twardych i modułów SSD; współczynnik kształtu 2,5 cala został pierwotnie stworzony do laptopów, ale ostatnio jest coraz częściej stosowany w podzespołach do pełnowymiarowych komputerów osobistych. Jednocześnie, oceniając liczbę tych zatok, należy pamiętać, że zaleca się instalowanie dysków przez slot; więc idealnie liczba zatok powinna być dwukrotnie większa od planowanej liczby dysków.
Należy również zauważyć, że w niektórych przypadkach używane są zatoki combo: początkowo mają rozmiar 3,5 cala, ale w razie potrzeby można je przekonwertować na 2,5 cala. Te zatoki liczą się zarówno jako sloty 3,5-calowe, jak i 2,5-calowe. W praktyce oznacza to, że całkowita liczba dostępnych slotów nie zawsze jest równa sumie obu. Na przykład 10-zatokowa 3,5-calowa i 6-zatokowa 2,5-calowa obudowa może mieć 4 zatoki combo, a łączna liczba slotów w tym przypadku nie będzie wynosiła 16, a tylko 12.
Miejsca na wentylatory na górze
Liczba miejsc na wentylatory
na panelu górnym obudowy, a także rozmiar wentylatorów, dla którego te miejsca są przeznaczone. Obecność samych wentylatorów w zestawie należy wyjaśniać osobno.
Uważa się, że im większy wentylator, tym bardziej zaawansowany on jest: duża średnica pozwala na wydajną pracę przy stosunkowo niskich obrotach, co zmniejsza hałas i zużycie energii. Wentylatory obudowy są dostępne w kilku standardowych średnicach, a miejsca dla nich mogą być zaprojektowane dla jednego lub kilku rozmiarów - na przykład 120/140 mm. Jednocześnie w niektórych modelach dostępna liczba miejsc zależy również od wybranego rozmiaru: na przykład istnieją obudowy do gier, w których można zainstalować jeden wentylator o średnicy 180 mm na górze lub cztery wentylatory o średnicy 120 mm jednocześnie.
USB 2.0
Liczba natywnych
złączy USB 2.0 zapewnionych w obudowie.
Złącza te znajdują się zwykle z przodu (więcej szczegółów w „Rozmieszczenie”). Są najwygodniejsze w przypadku urządzeń peryferyjnych, które trzeba często podłączać i odłączać - na przykład pendrive'ów (w przypadku urządzeń podłączonych na stałe wygodniej jest używać złączy płyty głównej znajdujących się na tylnym panelu). W szczególności USB 2.0 jest obecnie uważany za przestarzały: zapewnia prędkość przesyłania danych tylko 480 Mb/s i stosunkowo niski pobór mocy. Niemniej jednak w wielu przypadkach okazuje się to w zupełności wystarczające, a porty USB 2.0 są nadal wykorzystywane, także w dość zaawansowanych obudowach.
USB 3.2 gen1
Liczba natywnych złączy USB 3.2 Gen1 (wcześniej oznaczanych jako USB 3.1 Gen1 i
USB 3.0) dostępnych w obudowie.
Złącza te znajdują się zwykle z przodu (więcej szczegółów w „Rozmieszczenie”). Są najwygodniejsze w przypadku urządzeń peryferyjnych, które trzeba często podłączać i odłączać - na przykład pendrive'ów (w przypadku urządzeń podłączonych na stałe wygodniej jest używać złączy płyty głównej znajdujących się na tylnym panelu). W szczególności standard USB 3.2 Gen1 zastąpił opisany powyżej USB 2.0, zapewnia 10 razy wyższą prędkość przesyłania danych (do 4,8 Gb/s) i wyższe zasilanie, a do takich złączy można również podłączyć peryferia w standardzie USB 2.0.
Warto pamiętać, że do normalnej pracy portów ich liczba i wersje muszą odpowiadać możliwościom płyty głównej.
USB C 3.2 gen2
Liczba natywnych
złączy USB C 3.2 Gen2 (wcześniejsze nazwy to USB C 3.1 Gen2 i USB C 3.1) przewidzianych w obudowie.
Złącza takie zwykle znajdują się z przodu (więcej szczegółów w „Rozmieszczenie”). Są one najwygodniejsze w przypadku urządzeń peryferyjnych, które trzeba często podłączać i odłączać – np. „pendrive'ów” (w przypadku urządzeń podłączonych na stałe wygodniej jest używać złączy płyty głównej na tylnym panelu). W szczególności
USB C jest stosunkowo nowym typem złącza USB - mniejszym niż klasyczne USB i mającym odwracalną konstrukcję. Użytek takiego złącza może być różne, w zależności od charakterystyki płyty głównej: mianowicie może służyć również jako port Thunderbolt v3, a interfejs połączeniowy 3.2 Gen2 charakteryzuje się przepustowością do 10 Gb/s.