Polska
Katalog   /   Komputery   /   Podzespoły   /   Dyski twarde

Porównanie WD AV-GP WD10EURX 1 TB vs WD RE WD1003FBYX 1 TB

Dodaj do porównania
WD AV-GP WD10EURX 1 TB
WD RE WD1003FBYX 1 TB
WD AV-GP WD10EURX 1 TBWD RE WD1003FBYX 1 TB
od 111 zł
Produkt jest niedostępny
Porównaj ceny 1
TOP sprzedawcy
Typ dyskuwewnętrznywewnętrzny
Rodzaj dyskuHDDHDD
Przeznaczeniedo PCdo serwera
Pojemność1000 GB1000 GB
Format3.5 "3.5 "
InterfejsSATA3SATA
Gwarancja producenta3 lata5 lat
Specyfikacja
Pojemność bufora64 MB64 MB
Prędkość obrotowa5400 – 7200 obr./min7200 obr./min
Pobór mocy w trybie pracy5.3 W10.7 W
Pobór mocy w trybie czuwania0.7 W1.5 W
Odporność na wstrząsy w trakcie pracy65 G65 G
Poziom hałasu podczas odczytu24 dB34 dB
Poziom hałasu w trybie czuwania23 dB29 dB
Średni czas bezawaryjnej pracy600 tys. razy
Data dodania do E-Katalogstyczeń 2013luty 2011

Przeznaczenie

Ogólne przeznaczenie dysku twardego to rodzaj urządzenia, do którego był pierwotnie przeznaczony.

- Do PC. Dyski twarde przeznaczone do użytku z konwencjonalnymi komputerami domowymi i laptopami. Możliwość zainstalowania wewnętrznego dysku twardego (patrz „Wykonanie”) zależy bezpośrednio od współczynnika kształtu (patrz odpowiedni punkt), podczas gdy modele zewnętrzne nie podlegają takim ograniczeniom - dla nich wystarczy mieć odpowiednie złącze połączeniowe. Należy również pamiętać, że prawie wszystkie zewnętrzne dyski twarde są zaprojektowane specjalnie dla komputerów osobistych; wykonanie modeli serwerowych w postaci urządzeń zewnętrznych nie jest technicznie uzasadnione.

- Do serwerów. Dyski twarde przeznaczone do serwerów charakteryzują się zwiększoną prędkością i niezawodnością, ponieważ stale muszą odbierać i wysyłać duże ilości informacji. Aby zapewnić szybką pracę, mogą być wyposażone w zwiększoną prędkość obrotową (do 15 000 obr./min). Takie dyski są wykonywane tylko jako urządzenia wewnętrzne (patrz „Wykonanie”) i oprócz SATA mogą używać innych, bardziej specyficznych typów podłączenia - na przykład SAS (patrz „Rodzaj podłączenia”).

- Do konsoli do gier. Specjalistyczne dyski twarde przeznaczone do użytku z konsolami do gier. Są one wykonane wyłącznie w postaci urządzeń zewnętrznych (patrz „Wykonanie...”), przeznaczone głównie do przechowywania gier – w tym zapisów i profili ustawień użytkownika. Główną różnicą między takimi urządzeniami a klasycznymi zewnętrznymi dyskami twardymi jest właśnie optymalizacja pracy z konsolami do gier, w tym obecność specjalnych narzędzi programowych do lepszej integracji. Wiele z tych dysków zostało pierwotnie zaprojektowanych do konkretnego modelu lub rodziny konsol.

Interfejs

— SATA Jest to obecnie najpopularniejszy interfejs do podłączania wewnętrznych dysków twardych. pierwsza wersja SATA zapewnia prędkość przesyłania danych około 1,2 Gbit/s, SATA 2 ma praktyczną prędkość przesyłania danych około 2,4 Gbit/s (300 MB/s), a najbardziej zaawansowana generacja SATA 3 ma prędkość 4,8 Gbit/s (600 MB/s)

-eSATA. Modyfikacja interfejsu SATA przeznaczonego do podłączenia zewnętrznych dysków twardych; nie jest kompatybilny z wewnętrznym SATA. Praktyczna prędkość przesyłania danych jest podobna do SATA 2 i wynosi około 2,4 Gbps (300 MB/s).

- SAS. Modyfikacja interfejsu SCSI zapewnia prędkość przesyłu danych do 6 Gbit/s (750 Mb/s). Stosowany jest głównie w serwerach, praktycznie nie jest stosowany w komputerach stacjonarnych i laptopach.

-USB 2.0. Najwcześniejszy ze standardów USB spotykany we współczesnych dyskach twardych - i to wyłącznie zewnętrznych (patrz „Wykonanie”). Zapewnia połączenie z tradycyjnym pełnowymiarowym portem USB, zapewnia prędkość przesyłu danych do 480 Mbit/s, a także dość niskie zasilanie, dlatego dyski z tego typu złączem często wymagają dodatkowego zasilania. W świetle tego wszystkiego, a także pojawienia się bardziej zaawansowanego standardu USB 3.2 (patrz poniżej), dziś USB 2.0 jest uważane za przestarzałe i niezwykle rzadkie, głównie w niedrogich i wczesnych modelach dysk...ów. Jednak dysk z tym interfejsem można podłączyć także do nowszego portu USB - najważniejsze, żeby złącza pasowały.

USB 3.2 gen1(poprzednie nazwy USB 3.1 gen1 i USB 3.0). Standard podłączania zewnętrznych dysków twardych, który zastąpił opisany powyżej USB 2.0. Wykorzystuje tradycyjne pełnowymiarowe złącze USB, zapewnia prędkość przesyłu danych do 4,8 Gbps (600 MB/s), a także wyższy poziom zasilania, dzięki czemu łatwiej obejść się bez zewnętrznego zasilania w tego typu dyskach. Jednak z tego samego powodu trzeba zachować ostrożność przy podłączaniu dysków USB 3.2 gen1 do starszych złączy USB 2.0 – takie złącze może nie mieć wystarczającej mocy, aby zasilić nowszy dysk.

-USB 3.2 gen2. Dalszy rozwój standardu USB 3.2 (wcześniej znanego jako USB 3.1 gen2 i USB 3.1). Maksymalna prędkość przesyłania danych w tej wersji została zwiększona do 10 Gbps, a moc zasilacza może sięgać 100 W (przy wsparciu technologii USB Power Delivery). Jednocześnie dyski z tego typu złączem mogą współpracować również z wcześniejszymi wersjami pełnowymiarowych złączy USB - najważniejsze, aby zasilacz był wystarczający.

USB C 3.2 gen1(poprzednie nazwy USB C 3.1 gen1 i USB C 3.0). Połączenie poprzez złącze USB C, odpowiadające możliwościom USB 3.2 gen1. Możliwości te opisano szerzej powyżej; różnica w stosunku do „zwykłego” USB 3.2 gen1 w tym przypadku polega jedynie na rodzaju złącza: jest to stosunkowo małe (nieco większe od microUSB) gniazdo, które również posiada dwustronne złącze. projekt. Dzięki swoim kompaktowym rozmiarom USB C można znaleźć zarówno w pełnowymiarowych komputerach stacjonarnych i laptopach, jak i w kompaktowych gadżetach, takich jak smartfony i tablety; Niektóre dyski z tym połączeniem początkowo umożliwiają użytkowanie „mobilne”.

USB C 3.2 gen2(poprzednie nazwy USB C 3.1 gen2 i USB C 3.1). Aktualizacja i ulepszenie opisanego powyżej USB C 3.2 gen1 - to samo złącze USB C i zwiększona prędkość przesyłania danych do 10 Gbps (jak w „zwykłym” USB 3.2 gen2).

- Piorun. Szybki interfejs do podłączania zewnętrznych urządzeń peryferyjnych. Stosowany jest głównie w komputerach i laptopach marki Apple, choć spotykany jest także w sprzęcie innych producentów. Należy pamiętać, że we współczesnych dyskach twardych występują głównie dwie wersje Thunderbolt, które różnią się nie tylko szybkością działania, ale także złączem: Thunderbolt v2(do 20 Gbps) wykorzystuje wtyczkę miniDisplayPort, a Thunderbolt v3(do 40 Gbps) — USB Wtyczka C (patrz wyżej). W związku z tym niektóre dyski twarde obsługują połączenia USB C i Thunderbolt za pośrednictwem pojedynczego złącza sprzętowego, które automatycznie wykrywa, do którego wejścia komputera jest podłączone urządzenie.

Gwarancja producenta

Gwarancja producenta na ten model.

W rzeczywistości jest to minimalna żywotność obiecana przez producenta, z zastrzeżeniem zasad działania. Najczęściej rzeczywista żywotność urządzenia jest znacznie dłuższa niż gwarantowana.

Prędkość obrotowa

W przypadku dysków używanych w komputerach stacjonarnych (patrz „Przeznaczenie”) standardowe prędkości to 5400 obr./min (normalna) i 7200 obr./min (podwyższona). Dostępne są również bardziej specyficzne opcje, w tym modele z możliwością dostosowania prędkości w zależności od obciążenia. Z kolei w dyskach serwerowych mogą się stosować wyższe prędkości – 10 000 obr./min, a nawet 15 000 obr./min.

Pobór mocy w trybie pracy

Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.

Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.

Pobór mocy w trybie czuwania

Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.

Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).

Poziom hałasu podczas odczytu

Poziom hałasu wydawanego przez dysk podczas odczytywania i/lub zapisywania informacji. Źródłem dźwięku w tym przypadku są ruchome talerze dysku, a także mechanika sterująca głowicami czytającymi. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny hałas wydawany przez współczesne dyski twarde podczas pracy wynosi około 50 dB - jest to porównywalne z tłem dźwiękowym w przeciętnym biurze.

Poziom hałasu w trybie czuwania

Poziom hałasu wydawanego przez dysk w stanie bezczynności, gdy nie są wykonywane żadne operacje odczytu i/lub zapisu. Źródłem dźwięku w tym przypadku są talerze – obracają się one cały czas, gdy dysk jest włączony; ponieważ nie jest zaangażowana żadna inna mechanika, hałas w trybie czuwania jest generalnie niższy niż podczas odczytu/zapisu. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny poziom hałasu współczesnych dysków twardych w trybie czuwania wynosi około 40 dB - jest to porównywalne z niską głośnością mowy ludzkiej.

Średni czas bezawaryjnej pracy

Gwarantowana (minimalna) liczba cykli włączania i wyłączania dysku twardego, po których będzie on nadal działał. Im wyższa ta liczba, tym bardziej niezawodny dysk.
Dynamika cen
WD AV-GP często porównują
WD RE często porównują