Polska
Katalog   /   Komputery   /   Podzespoły   /   Dyski twarde

Porównanie Seagate BarraCuda Pro Compute 2.5" ST500LM034 500 GB vs Seagate FireCuda 2.5" ST500LX025 500 GB

Dodaj do porównania
Seagate BarraCuda Pro Compute 2.5" ST500LM034 500 GB
Seagate FireCuda 2.5" ST500LX025 500 GB
Seagate BarraCuda Pro Compute 2.5" ST500LM034 500 GBSeagate FireCuda 2.5" ST500LX025 500 GB
od 289 zł
Wkrótce w sprzedaży
od 249 zł
Produkt jest niedostępny
TOP sprzedawcy
Typ dyskuwewnętrznywewnętrzny
Rodzaj dyskuHDDSSHD
Przeznaczeniedo PCdo PC
Pojemność500 GB500 GB
Format2.5 "2.5 "
InterfejsSATA3SATA3
Gwarancja producenta5 lat5 lat
Specyfikacja
Pojemność bufora128 MB
Pojemność pamięci podręcznej NAND8 GB
Prędkość obrotowa7200 obr./min5400 obr./min
Prędkość przesyłu danych160 MB/s140 MB/s
Pobór mocy w trybie pracy1.9 W1.7 W
Pobór mocy w trybie czuwania0.7 W0.45 W
Odporność na wstrząsy w trakcie pracy400 G400 G
Poziom hałasu podczas odczytu24 dB22 dB
Poziom hałasu w trybie czuwania22 dB20 dB
Średni czas bezawaryjnej pracy600 tys. razy600 tys. razy
Dane ogólne
Wymiary100x70x7 mm100x70x7 mm
Waga85 g92 g
Data dodania do E-Katalogkwiecień 2018grudzień 2016

Rodzaj dysku

Typ, do którego należy dysk. W szerokim sensie do dysków twardych zalicza się kilka typów dysków:

- HDD. Dyski twarde w klasycznym znaczeniu tego słowa to dyski, które zapisują informacje na obracających się płytach magnetycznych. Pomimo pojawienia się bardziej zaawansowanych typów dysków, klasyczne dyski twarde nadal nie tracą popularności ze względu na połączenie imponujących pojemności i niskich kosztów. Ich główne wady to znaczna waga i pobór mocy, a także stosunkowo niska prędkość odczytu i zapisu danych.

- SSHD. Dyski hybrydowe, które łączą w jednej obudowie opisany powyżej dysk HDD i dysk półprzewodnikowy SSD; system traktuje dysk SSHD jako jedno urządzenie. Ideą takiego połączenia jest zwiększenie prędkości odczytu i zapisu, przy zachowaniu głównej zalety dysku twardego – dużych pojemności przy niskim koszcie. W tym celu część półprzewodnikowa dysku SSHD działa jak szybki schowek między systemem a dyskiem twardym; pod względem wydajności takie systemy, choć nie osiągają poziomu pełnoprawnych dysków SSD, są zauważalnie lepsze od tradycyjnych dysków twardych.

- Macierz RAID. Macierze RAID wykonane jako oddzielne urządzenia (zwykle zewnętrzne, patrz „Wykonywanie”). Takie urządzenie składa się z kilku dysków twardych zainstalowanych w jednej obudowie i połączonych w macierz, która jest postrzegana przez system jako pojedynczy dysk. Istnieje kilka typów (poziomów) macierzy...RAID, które różnią się sposobem interakcji dysków w macierzy i odpowiednio specyfiką ich zastosowania. Tak więc w RAID 0 informacje są zapisywane naprzemiennie na każdym dysku, co zwiększa prędkość działania; w RAID 1 każdy dysk jest kopią wszystkich pozostałych, co daje maksymalną odporność na awarie itp. Szczegółowe dane dotyczące poziomów RAID można znaleźć w dedykowanych źródłach. W tym miejscu zwracamy uwagę, że zakup macierzy RAID może być wygodniejszy niż składanie jej z oddzielnie zakupionych dysków: gotowa macierz jest początkowo wyposażona we wszystko, co jest potrzebne i wymaga jedynie minimalnej konfiguracji. Najważniejsze jest, aby przed zakupem wyjaśnić, które poziomy RAID obsługuje wybrany model.

Pojemność bufora

Wielkość własnej pamięci RAM dysku twardego. Ta pamięć jest pośrednim ogniwem między szybką pamięcią o dostępie swobodnym komputera a stosunkowo powolną mechaniką odpowiedzialną za odczytywanie i zapisywanie informacji na talerzach dysków. W szczególności bufor służy do przechowywania najczęściej żądanych danych z dysku, skracając w ten sposób czas dostępu do nich.
Technicznie rzecz biorąc, rozmiar bufora wpływa na prędkość dysku twardego - im większy bufor, tym szybszy jest dysk. Jednak wpływ ten jest raczej znikomy, a na poziomie ludzkiej percepcji znaczna różnica w wydajności jest zauważalna tylko wtedy, gdy wielkość bufora obu dysków różni się wielokrotnie – na przykład 8 MB i 64 MB.

Pojemność pamięci podręcznej NAND

Pojemność pamięci półprzewodnikowej NAND zainstalowanej na dysku SSHD (patrz „Rodzaj dysku”).

Taka pamięć działa jak szybki bufor między systemem a rzeczywistym dyskiem twardym. Z reguły przechowywane są w nim najczęściej używane dane, co przyspiesza późniejszy do nich dostęp; a kiedy dane są zapisywane na dysku, dane te są najpierw przechowywane w buforze, a dopiero potem przesyłane na talerze dysku. Większość wspołczesnych dysków SSHD zawiera 8 GB pamięci półprzewodnikowej, co jest uważane za najbardziej rozsądny kompromis między prędkością a całkowitym kosztem urządzenia.

Prędkość obrotowa

W przypadku dysków używanych w komputerach stacjonarnych (patrz „Przeznaczenie”) standardowe prędkości to 5400 obr./min (normalna) i 7200 obr./min (podwyższona). Dostępne są również bardziej specyficzne opcje, w tym modele z możliwością dostosowania prędkości w zależności od obciążenia. Z kolei w dyskach serwerowych mogą się stosować wyższe prędkości – 10 000 obr./min, a nawet 15 000 obr./min.

Prędkość przesyłu danych

Prędkość przesyłu danych między dyskiem a urządzeniami klienckimi zależy od typu napędu, prędkości obrotowej, rozmiaru bufora pamięci i złączy połączeniowych. Ostatni parametr jest najważniejszy, ponieważ nie da się przekroczyć przepustowości konkretnego interfejsu.

Pobór mocy w trybie pracy

Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.

Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.

Pobór mocy w trybie czuwania

Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.

Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).

Poziom hałasu podczas odczytu

Poziom hałasu wydawanego przez dysk podczas odczytywania i/lub zapisywania informacji. Źródłem dźwięku w tym przypadku są ruchome talerze dysku, a także mechanika sterująca głowicami czytającymi. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny hałas wydawany przez współczesne dyski twarde podczas pracy wynosi około 50 dB - jest to porównywalne z tłem dźwiękowym w przeciętnym biurze.

Poziom hałasu w trybie czuwania

Poziom hałasu wydawanego przez dysk w stanie bezczynności, gdy nie są wykonywane żadne operacje odczytu i/lub zapisu. Źródłem dźwięku w tym przypadku są talerze – obracają się one cały czas, gdy dysk jest włączony; ponieważ nie jest zaangażowana żadna inna mechanika, hałas w trybie czuwania jest generalnie niższy niż podczas odczytu/zapisu. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny poziom hałasu współczesnych dysków twardych w trybie czuwania wynosi około 40 dB - jest to porównywalne z niską głośnością mowy ludzkiej.
Dynamika cen
Seagate BarraCuda Pro Compute 2.5" często porównują
Seagate FireCuda 2.5" często porównują