Fazy zasilania
Liczba faz zasilania procesora przewidzianych na płycie głównej.
W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.
Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.
Podświetlenie LED
Obecność na płycie głównej własnego
podświetlenia LED. Funkcja ta nie wpływa na funkcjonalność płyty głównej, ale nadaje jej niecodzienny wygląd. Dlatego nie ma sensu, aby zwykły użytkownik specjalnie szukał takiego modelu (potrzebuje
płyty głównej bez podświetlenia), ale dla miłośników modowania podświetlenie może być bardzo przydatne.
Podświetlenie LED może mieć postać osobnych świateł lub pasków LED, wykonane w różnych kolorach (czasem z możliwością wyboru kolorów) i obsługiwać dodatkowe efekty - mruganie, migotanie, synchronizację z innymi komponentami (patrz „Synchronizacja podświetlenia”) itp. Specyficzne możliwości zależą od modelu płyty głównej.
Synchronizacja podświetlenia
Technologia synchronizacji przewidziana na płycie z podświetleniem LED (patrz wyżej).
Sama synchronizacja pozwala „dopasować” podświetlenie płyty głównej do podświetlenia innych elementów systemu - obudowy, karty graficznej, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać / wyłączać itp. Konkretne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoje własne (Mystic Light Sync od MSI, RGB Fusion od Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty od jednego producenta.
Wymiary (WxS)
Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.
Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.
Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.
Maksymalna częstotliwość taktowania
Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.
W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM
1500 - 2000 MHz lub
mniej jest uważana za bardzo niską,
2000 - 2500 MHz jest skromna,
2500 - 3000 MHz jest średnia,
3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach
obsługiwane mogą być 3500 - 4000 MHz, a nawet
ponad 4000 MHz.
Obsługa ECC
Możliwość współpracy płyty głównej z modułami pamięci obsługującymi technologię
ECC (Error Checking and Correction). Technologia ta pozwala korygować drobne błędy, które pojawiają się w procesie pracy z danymi i zwiększa ogólną niezawodność systemu; jest stosowana głównie w serwerach.
Interfejs M.2
Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.
Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
- SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
- PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.
Tryby PCI-E
Tryby pracy slotów PCI-E 16x obsługiwane przez płytę główną.
Aby uzyskać więcej informacji na temat tego interfejsu, patrz wyżej, a dane dotyczące trybów określa się w przypadku, jeśli na płycie jest kilka gniazd PCI-E 16x. Dane te określają, z jaką prędkością te gniazda mogą pracować przy jednoczesnym podłączaniu do nich kart rozszerzeń, ile linii może używać każdy z nich. Faktem jest, że całkowita liczba linii PCI-Express na każdej płycie głównej jest ograniczona i zwykle nie wystarczają one do jednoczesnej pracy wszystkich 16-kanałowych gniazd z pełną mocą. W związku z tym, podczas jednoczesnej pracy, prędkość nieuchronnie musi zostać ograniczona: na przykład zapis 16x / 4x / 4x oznacza, że płyta główna ma trzy 16-kanałowe gniazda, ale jeśli trzy karty graficzne są do nich podłączone jednocześnie, to drugie i trzecie gniazdo będą w stanie zapewnić prędkość tylko na poziomie PCI-E 4x. W związku z tym dla innej liczby slotów i liczby cyfr będą odpowiednie. Istnieją również karty z kilkoma trybami - na przykład 16x / 0x / 4 i 8x / 8x / 4x (0x oznacza, że slot w ogóle przestaje działać).
Należy zwrócić uwagę na parametr ten głównie podczas instalowania kilku kart graficznych jednocześnie: w niektórych przypadkach (na przykład podczas korzystania z technologii SLI), aby karty graficzne działały poprawnie, muszą być podłączone do gniazd z tą samą prędkością.
Moduł TPM
Specjalistyczne
złącze TPM do podłączenia modułu szyfrującego.
Moduł TPM (Trusted Platform Module) umożliwia szyfrowanie danych przechowywanych na komputerze za pomocą unikalnego klucza, który jest prawie nie do złamania (jest to niezwykle trudne do zrobienia). Klucze są przechowywane w samym module i są niedostępne z zewnątrz, a dane można zabezpieczyć w taki sposób, aby ich normalne odszyfrowanie było możliwe tylko na tym samym komputerze, na którym zostały zaszyfrowane (i tym samym oprogramowaniem). Tak więc, jeśli informacje zostaną nielegalnie skopiowane, atakujący nie będzie mógł uzyskać do nich dostępu, nawet jeśli oryginalny moduł TPM z kluczami szyfrowania zostanie skradziony: TPM rozpozna zmianę systemu i nie pozwoli na odszyfrowanie.
Z technicznego punktu widzenia moduły szyfrujące mogą być wbudowane bezpośrednio na płyty główne, jednak nadal bardziej uzasadnione jest uczynienie ich oddzielnymi urządzeniami: wygodniej jest kupić moduł TPM w razie potrzeby, zamiast przepłacać za natywnie wbudowaną funkcję, która może okazać się niepotrzebna. Z tego powodu istnieją płyty główne
bez złącza TPM.