Fazy zasilania
Liczba faz zasilania procesora przewidzianych na płycie głównej.
W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.
Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.
Synchronizacja podświetlenia
Technologia synchronizacji przewidziana na płycie z podświetleniem LED (patrz wyżej).
Sama synchronizacja pozwala „dopasować” podświetlenie płyty głównej do podświetlenia innych elementów systemu - obudowy, karty graficznej, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać / wyłączać itp. Konkretne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoje własne (Mystic Light Sync od MSI, RGB Fusion od Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty od jednego producenta.
Wymiary (WxS)
Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.
Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.
Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.
Obsługa DualBIOS
Obsługa przez płytę główną technologii DualBIOS.
Awarie i błędy w BIOS-ie (patrz BIOS) to jedne z najpoważniejszych problemów, jakie mogą pojawić się na współczesnym komputerze - nie tylko sprawiają, że komputer jest nieefektywny, ale także są bardzo trudne do naprawienia.
Technologia DualBIOS została zaprojektowana, aby ułatwić walkę z tego rodzaju problemami. Płyty główne wykonane przy użyciu tej technologii mają dwa mikroukłady do nagrywania BIOS-u: pierwszy mikroukład zawiera główną wersję BIOS-u, która jest używana do uruchamiania systemu w trybie normalnym, drugi zawiera kopię zapasową BIOS-u w oryginalnej (fabrycznej) konfiguracji. Mikroukład zapasowy zaczyna działać po wykryciu błędu w głównym systemie BIOS: w przypadku wykrycia błędu w kodzie programu przywracany jest do oryginalnej wersji fabrycznej, ale w przypadku awarii sprzętowej mikroukład zapasowy przejmuje kontrolę nad system, zastępując główny. Pozwala to na utrzymanie systemu w stanie gotowości nawet w przypadku poważnych problemów z BIOS-em bez konieczności uciekania się do skomplikowanych procedur przywracania.
Maksymalna częstotliwość taktowania
Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.
W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM
1500 - 2000 MHz lub
mniej jest uważana za bardzo niską,
2000 - 2500 MHz jest skromna,
2500 - 3000 MHz jest średnia,
3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach
obsługiwane mogą być 3500 - 4000 MHz, a nawet
ponad 4000 MHz.
USB 3.2 gen1
Liczba
złączy USB 3.2 gen1 znajdujących się na płycie głównej.
Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.
Co się tyczy konkretnie wersji USB 3.2 gen1 (wcześniej znany jako USB 3.1 gen1 i USB 3.0), to ona zapewnia prędkość transmisji danych do 4,8 Gb/s i wyższą moc zasilania niż wcześniejszy standard USB 2.0. Jednocześnie technologia USB Power Delivery, umożliwiająca osiągnięcie mocy do 100 W, zwykle nie jest obsługiwana przez złącza tej wersji dla USB A (choć można ją zaimplementować w złączach na USB-C).
USB C 3.2 gen1
Liczba
złączy USB-C 3.2 gen1 znajdujących się na płycie głównej.
Złącza USB-C (wszystkie wersje) służą do podłączenia do płyty głównej portów USB-C znajdujących się na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB-C znajdujących się w obudowie, które jest w stanie obsłużyć.
Przypomnijmy, że USB-C to stosunkowo nowy typ złącza USB, wyróżnia się niewielkimi rozmiarami i dwustronną konstrukcją; takie złącza mają swoje własne cechy techniczne, dlatego należy zapewnić dla nich odpowiednie gniazda. W szczególności USB 3.2 gen1 (wcześniej znane jako USB 3.1 gen1 i USB 3.0) zapewnia szybkość przesyłania danych do 4,8 Gb/s. Dodatkowo na złączu USB-C ta wersja złącza może obsługiwać technologię USB Power Delivery, która umożliwia zasilanie urządzeń zewnętrznych o mocy do 100 W; jednakże funkcja ta nie koniecznie musi występować, jej obecność w złączach danej płyty głównej należy sprawdzać osobno.
USB C 3.2 gen2
Liczba
złączy USB-C 3.2 gen2 znajdujących się na płycie głównej.
Złącza USB-C (wszystkie wersje) służą do podłączenia do płyty głównej portów USB-C znajdujących się na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB-C znajdujących się w obudowie, które jest w stanie obsłużyć.
Przypomnijmy, że USB-C to stosunkowo nowy typ złącza USB, wyróżnia się niewielkimi rozmiarami i dwustronną konstrukcją; takie złącza mają swoje własne cechy techniczne, dlatego należy zapewnić dla nich odpowiednie gniazda. W szczególności wersja USB 3.2 gen2 (wcześniej znana jako USB 3.1 gen2 i USB 3.1) zapewnia szybkość przesyłania danych do 10 Gb/s i może obsługiwać technologię USB Power Delivery, która umożliwia zasilanie urządzeń zewnętrznych o mocy do 100 W na port. Jednak obecność Power Delivery na określonych płytach głównych (a nawet w określonych złączach na jednej płycie) należy sprawdzać osobno.
DisplayPort
Obecność u płyty głównej własnego wyjścia
DisplayPort.
Takie wyjście jest przeznaczona do transmisji wideo z wbudowanej karty graficznej (patrz wyżej) lub procesor z zintegrowaną grafiką (podkreślamy, że wyświetlać na nim sygnał z karty graficznej przez chipset "płyty głównej" nie można). Co do konkretnie DisplayPort, to cyfrowy interfejs, stworzony specjalnie dla sprzętu komputerowego; w szczególności jest on standardem dla monitorów Apple, choć spotyka się i w telefonach innych producentów.
Konkretne możliwości DisplayPort mogą być różne, w zależności od wersji. Więcej o tym poniżej; tutaj należy pamiętać, że interfejs ten radzi sobie z sygnałem wideo w wysokiej rozdzielczości, a także ma ciekawą funkcję — podłączenie kilku monitorów do jednego wyjścia, konsekwentnie, "łańcuchem" (daisy chain).