Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie Asus ROG STRIX Z390-E GAMING vs Gigabyte Z390 AORUS ULTRA

Dodaj do porównania
Asus ROG STRIX Z390-E GAMING
Gigabyte Z390 AORUS ULTRA
Asus ROG STRIX Z390-E GAMINGGigabyte Z390 AORUS ULTRA
Porównaj ceny 4Porównaj ceny 1
TOP sprzedawcy
Główne
W 10-fazowej systemu zasilania są używane kondensatory, ferrytowe dławiki i układu z obciążeniem 45 A. Wsparcie dla interfejsów USB 3.1 Gen 2 i USB 3.1 Gen 1 Type-C. interfejs sieci Bezprzewodowej Intel Wireless-AC 9560.
12-fazowy system zasilania z masywnymi grzejnikami kratowymi połączonymi rurką cieplną. Wzmocnione gniazda PCI-E z obsługą NVIDIA SLI i AMD CrossFire pracujące zgodnie ze schematem x8/x8/x4. Trzy radiatory do chłodzenia szybkich m.2
Przeznaczeniedo gier (overclocking)do gier (overclocking)
SocketIntel LGA 1151 v2Intel LGA 1151 v2
FormatATXATX
Fazy zasilania1012
Radiator VRM
Podświetlenie LED
Synchronizacja podświetleniaAsus Aura SyncGigabyte RGB Fusion
Wymiary (WxS)305x244 mm305x244 mm
Chipset
ChipsetIntel Z390Intel Z390
BIOSAmiAmi
Obsługa DualBIOS
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania4266 MHz4400 MHz
Maks. wielkość pamięci128 GB128 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.22 szt.3 szt.
Interfejs M.21xSATA/PCI-E 4x, 1xPCI-E 4x2xSATA/PCI-E 4x, 1xPCI-E 4x
Chłodzenie dysku SSD M.2
Zintegrowany kontroler RAID
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x3 szt.3 szt.
Liczba gniazd PCI-E 16x3 szt.3 szt.
Tryby PCI-E16x/0x/4x, 8x/8x/4x16x/0x/4x, 8x/8x/4x
Obsługa PCI Express3.03.0
Obsługa CrossFire (AMD)
Obsługa SLI (NVIDIA)
Stalowe złącza PCI-E
Złącza na płycie głównej
Moduł TPM
USB 2.02 szt.2 szt.
USB 3.2 gen11 szt.1 szt.
USB 3.2 gen21 szt.
USB C 3.2 gen21 szt.
Złącze Thunderbolt AICv3 1 szt.
RGB LED strip2 szt.
Cechy dodatkowe2xdigital LED, Serial port, Temperature sensor
Wyjścia wideo
Wyjście HDMI
DisplayPort
Zintegrowany układ audio
Układ audioSupremeFXRealtek ALC1220-VB
Dźwięk (liczba kanałów)7.17.1
Optyczne S/P-DIF
Interfejsy sieciowe
Wi-FiWi-Fi 5 (802.11aс)Wi-Fi 5 (802.11aс)
BluetoothBluetooth v 5.0
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANIntel I219VIntel GbE
Złącza na tylnym panelu
USB 2.02 szt.4 szt.
USB 3.2 gen12 szt.2 szt.
USB 3.2 gen23 szt.3 szt.
USB C 3.2 gen21 szt.1 szt.
PS/21 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8+4 pin
Liczba złączy wentylatorów CPU5 szt.8 szt.
CPU Fan 4-pin1 szt.
CPU/Water Pump Fan 4-pin3 szt.
Chassis/Water Pump Fan 4-pin4 szt.
Data dodania do E-Katalogpaździernik 2018październik 2018

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Synchronizacja podświetlenia

Technologia synchronizacji przewidziana na płycie z podświetleniem LED (patrz wyżej).

Sama synchronizacja pozwala „dopasować” podświetlenie płyty głównej do podświetlenia innych elementów systemu - obudowy, karty graficznej, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać / wyłączać itp. Konkretne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoje własne (Mystic Light Sync od MSI, RGB Fusion od Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty od jednego producenta.

Obsługa DualBIOS

Obsługa przez płytę główną technologii DualBIOS.

Awarie i błędy w BIOS-ie (patrz BIOS) to jedne z najpoważniejszych problemów, jakie mogą pojawić się na współczesnym komputerze - nie tylko sprawiają, że komputer jest nieefektywny, ale także są bardzo trudne do naprawienia. Technologia DualBIOS została zaprojektowana, aby ułatwić walkę z tego rodzaju problemami. Płyty główne wykonane przy użyciu tej technologii mają dwa mikroukłady do nagrywania BIOS-u: pierwszy mikroukład zawiera główną wersję BIOS-u, która jest używana do uruchamiania systemu w trybie normalnym, drugi zawiera kopię zapasową BIOS-u w oryginalnej (fabrycznej) konfiguracji. Mikroukład zapasowy zaczyna działać po wykryciu błędu w głównym systemie BIOS: w przypadku wykrycia błędu w kodzie programu przywracany jest do oryginalnej wersji fabrycznej, ale w przypadku awarii sprzętowej mikroukład zapasowy przejmuje kontrolę nad system, zastępując główny. Pozwala to na utrzymanie systemu w stanie gotowości nawet w przypadku poważnych problemów z BIOS-em bez konieczności uciekania się do skomplikowanych procedur przywracania.

Maksymalna częstotliwość taktowania

Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.

W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM 1500 - 2000 MHz lub mniej jest uważana za bardzo niską, 2000 - 2500 MHz jest skromna, 2500 - 3000 MHz jest średnia, 3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach obsługiwane mogą być 3500 - 4000 MHz, a nawet ponad 4000 MHz.

Złącze M.2

Liczba złączy M.2 przewidzianych w konstrukcji płyty głównej. Istnieją płyty główne na 1 złącze M.2, na 2 złącza, 3 złącza lub więcej.

Złącze M.2 jest przeznaczone do podłączenia zaawansowanych urządzeń wewnętrznych w miniaturowym formacie — w szczególności szybkich dysków SSD, a także kart rozszerzeń, takich jak moduły Wi-Fi i Bluetooth. Jednak złącza zaprojektowane do podłączenia tylko urządzeń peryferyjnych (Key E) nie są zaliczane do liczby. Obecnie jest to jeden z najnowocześniejszych i najbardziej zaawansowanych sposobów podłączenia podzespołów. Warto jednak wziąć pod uwagę, że przez to złącze można podłączać różne interfejsy - SATA lub PCI-E, i nie koniecznie oba na raz. Aby uzyskać szczegółowe informacje, zobacz „Interfejs M.2”; tutaj należy dodać, że SATA ma niską prędkość i jest używany głównie do budżetowych dysków, podczas gdy PCI-E jest używany do zaawansowanych modułów półprzewodnikowych i nadaje się również do innych typów wewnętrznych urządzeń peryferyjnych.

W związku z tym liczba M.2 to liczba podzespołów tego formatu, które można jednocześnie podłączyć do płyty głównej. Jednocześnie wiele współczesnych płyt głównych, szczególnie tych ze średniej i wyższej półki, wyposażonych jest w dwa lub więcej złączy M.2 z obsługą PCI-E.

Interfejs M.2

Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.

Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
  • SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
  • PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.

Moduł TPM

Specjalistyczne złącze TPM do podłączenia modułu szyfrującego.

Moduł TPM (Trusted Platform Module) umożliwia szyfrowanie danych przechowywanych na komputerze za pomocą unikalnego klucza, który jest prawie nie do złamania (jest to niezwykle trudne do zrobienia). Klucze są przechowywane w samym module i są niedostępne z zewnątrz, a dane można zabezpieczyć w taki sposób, aby ich normalne odszyfrowanie było możliwe tylko na tym samym komputerze, na którym zostały zaszyfrowane (i tym samym oprogramowaniem). Tak więc, jeśli informacje zostaną nielegalnie skopiowane, atakujący nie będzie mógł uzyskać do nich dostępu, nawet jeśli oryginalny moduł TPM z kluczami szyfrowania zostanie skradziony: TPM rozpozna zmianę systemu i nie pozwoli na odszyfrowanie.

Z technicznego punktu widzenia moduły szyfrujące mogą być wbudowane bezpośrednio na płyty główne, jednak nadal bardziej uzasadnione jest uczynienie ich oddzielnymi urządzeniami: wygodniej jest kupić moduł TPM w razie potrzeby, zamiast przepłacać za natywnie wbudowaną funkcję, która może okazać się niepotrzebna. Z tego powodu istnieją płyty główne bez złącza TPM.

USB 3.2 gen2

Liczba złączy USB 3.2 gen2 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.

Jeśli chodzi o konkretną wersję USB 3.2 gen2 (wcześniej znaną jako USB 3.1 gen2 i USB 3.1), działa ona z prędkością do 10 Gb/s. Ponadto takie złącza mogą zapewniać obsługę technologii USB Power Delivery, która pozwala dostarczać moc zasilania do 100W na złącze; jednakże funkcja ta nie koniecznie musi występować, jej obecność należy sprawdzać osobno.

USB C 3.2 gen2

Liczba złączy USB-C 3.2 gen2 znajdujących się na płycie głównej.

Złącza USB-C (wszystkie wersje) służą do podłączenia do płyty głównej portów USB-C znajdujących się na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB-C znajdujących się w obudowie, które jest w stanie obsłużyć.

Przypomnijmy, że USB-C to stosunkowo nowy typ złącza USB, wyróżnia się niewielkimi rozmiarami i dwustronną konstrukcją; takie złącza mają swoje własne cechy techniczne, dlatego należy zapewnić dla nich odpowiednie gniazda. W szczególności wersja USB 3.2 gen2 (wcześniej znana jako USB 3.1 gen2 i USB 3.1) zapewnia szybkość przesyłania danych do 10 Gb/s i może obsługiwać technologię USB Power Delivery, która umożliwia zasilanie urządzeń zewnętrznych o mocy do 100 W na port. Jednak obecność Power Delivery na określonych płytach głównych (a nawet w określonych złączach na jednej płycie) należy sprawdzać osobno.
Dynamika cen
Asus ROG STRIX Z390-E GAMING często porównują
Gigabyte Z390 AORUS ULTRA często porównują