Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Procesory

Porównanie Intel Core i7 Coffee Lake Refresh i7-9700K BOX vs Intel Core i7 Kaby Lake i7-7700 BOX

Dodaj do porównania
Intel Core i7 Coffee Lake Refresh i7-9700K BOX
Intel Core i7 Kaby Lake i7-7700 BOX
Intel Core i7 Coffee Lake Refresh i7-9700K BOXIntel Core i7 Kaby Lake i7-7700 BOX
od 1 644 zł
Wkrótce w sprzedaży
Porównaj ceny 1
Opinie
0
0
1
0
TOP sprzedawcy
Główne
8 rdzeni bez obsługi wielowątkowości (HyperThreading). Taktowanie podstawowe 3,6 GHz, taktowanie boost 4,9 GHz. Pamięć podręczna trzeciego poziomu to 12 MB.
SeriaCore i7Core i7
Nazwa kodowaCoffee Lake RefreshKaby Lake
Złącze (Socket)Intel LGA 1151 v2Intel LGA 1151
Proces technologiczny14 nm14 nm
Wersja opakowaniaBOX (bez wentylatora)BOX (z wentylatorem)
Rdzenie i wątki
Liczba rdzeni8 cores4 cores
Liczba wątków8 threads8 threads
Wielowątkowość
Częstotliwość
Częstotliwość taktowania3.6 GHz3.6 GHz
Częstotliwość TurboBoost / TurboCore4.9 GHz4.2 GHz
Pojemność pamięci podręcznej
Pamięć podręczna L1512 KB256 KB
Pamięć podręczna L22048 KB1024 KB
Pamięć podręczna L312 MB8 MB
Specyfikacja
Model zintegrowanego układu graficznegoUHD Graphics 630HD Graphics 630
Częstotliwość magistrali systemowej8 GT/s8 GT/s
Wydzielanie ciepła (TDP)95 W65 W
Obsługa instrukcjiMMX, SSE, SSE2, SSE2, SSSE3, SSE4.1, SSE4.2, EM64T, AES, AVX, AVX2MMX, SSE, SSE2, SSE2, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2
Mnożnik3636
Zmienny mnożnik
Obsługa PCI Express3.03.0
Maks. temperatura robocza100 °С100 °С
Test PassMark CPU Mark14613 punkty(ów)10736 punkty(ów)
Test Geekbench 434070 punkty(ów)19308 punkty(ów)
Test Cinebench R151495 punkty(ów)857 punkty(ów)
Obsługa pamięci
Maks. obsługiwana pojemność pamięci RAM128 GB64 GB
Maks. częstotliwość DDR31600 MHz
Maks. częstotliwość DDR42666 MHz2400 MHz
Liczba kanałów2 szt.2 szt.
Data dodania do E-Katalogwrzesień 2018styczeń 2017

Nazwa kodowa

Parametr ten charakteryzuje, po pierwsze, proces technologiczny, a po drugie niektóre cechy wewnętrznej budowy procesorów. Nowa nazwa kodowa jest wprowadzana na rynek z każdą nową generacją procesorów; chipy tej samej architekturze są „rówieśnikami”, lecz mogą należeć do różnych serii (patrz wyżej). W takim przypadku jedna generacja może zawierać jedną lub kilka nazw kodowych.

Oto najpopularniejsze obecnie nazwy kodowe Intela: Cascade Lake-X (10. generacja), Comet Lake (10. generacja), Comet Lake Refresh (10. generacja), Rocket Lake< /a> (11. generacja), Alder Lake (12. generacja), Raptor Lake (13. generacja), Raptor Lake Refresh (14. generacja).

W przypadku AMD są to: Zen+ Picasso, Zen2 Matisse, Zen2 Renoir, Zen3 Vermeer, Zen3 Cezanne, Zen4 Raphael, Zen4 Phoenix oraz Zen5 Granite Ridge.

Złącze (Socket)

Rodzaj złącza (gniazda) do montażu procesora na płycie głównej. W celu zapewnienia normalnej kompatybilności konieczne jest, aby procesor i płyta główna były zgodne z typem gniazda; kwestię tę należy wyjaśnić osobno przed zakupem jednego i drugiego.

W przypadku procesorów Intel, obecnie aktualne są następujące gniazda: 1150, 1155, 1356, 2011, 2011 v3, 2066, 1151, 1151 v2, 3647, 1200, 1700 , 1851.

Procesory AMD z kolei wyposażone są w następujące typy gniazd: AM3/AM3+, FM2/FM2+, AM4, AM5, TR4/TRX4, WRX8.

Wersja opakowania

Parametr ten nie tyle wskazuje różnicę w parametrach technicznych, ile opisuje opakowanie i akcesoria.

-OEM. Pakiet tacy, czyli OEM, zapewnia, że procesor jest dostarczany bez układu chłodzenia (CO) i bez markowego pudełka - opakowanie to zwykle zwykła torba antystatyczna. Musisz osobno wybrać i zainstalować chłodzenie dla takiego procesora, co wiąże się z dodatkowymi problemami; Co więcej, instalując samodzielnie chłodnicę, trudno jest uzyskać z niej taką samą wydajność, jak w przypadku chłodnicy zainstalowanej fabrycznie. Dodatkowo komponenty w opakowaniach tacowych mają zazwyczaj krótszy okres gwarancji niż w opakowaniach pudełkowych oraz posiadają uboższe wyposażenie dodatkowe. Z drugiej strony są zauważalnie tańsze; a brak CO pozwala wybrać go osobno, bez polegania na wyborze producenta.

— BOX (bez chłodnicy). Procesory zapakowane w markowe pudełka, ale nie wyposażone w układy chłodzenia (CO). Takie opakowanie jest droższe niż OEM, ale okres gwarancji na chipy „pudełkowe” jest zwykle znacznie dłuższy (na przykład trzy lata zamiast jednego). Z jednej strony brak chłodnicy wymaga dodatkowych wysiłków w celu znalezienia i zainstalowania chłodziwa; z drugiej strony chłodzenie można dobrać według własnych kryteriów, bez polegania na wyborze producenta. Warto jednak wziąć pod uwagę, że instalując samodzielnie chłodnicę, trudno jest uzyskać z niej taką samą wydajność, jak przy instalacji fabrycznej; Jest to szczególnie istotne, jeśli planowane jest intensywn...e podkręcanie procesora, w przypadku takich trybów lepiej wybrać pakiet pudełkowy z chłodnicą.

— BOX (z chłodnicą). Procesory zapakowane w markowe pudełka i wyposażone w układy chłodzenia (CO). Samo opakowanie pudełkowe jest droższe od OEM, jednak rekompensuje to szereg zalet – w szczególności szersze opakowanie i dłuższy okres gwarancji. Jeśli chodzi o obecność chłodnicy w zestawie, dodatkowo zwiększa to całkowity koszt procesora, ale eliminuje potrzebę zawracania sobie głowy wyborem i instalacją oddzielnego układu chłodzenia. Warto zaznaczyć, że fabryczna instalacja CO pozwala na osiągnięcie wyższej wydajności niż niezależna instalacja, dlatego ta konkretna opcja konfiguracji najlepiej sprawdza się przy dużych obciążeniach (w tym overclockingu). Z drugiej strony przed zakupem należy sprawdzić, czy w obudowie jest wystarczająco dużo miejsca na chłodnicę: kompletne chłodnice mogą być dość nieporęczne, a ich wymontowanie może być trudne.

Liczba rdzeni

Liczba fizycznych rdzeni przewidziana w konstrukcji procesora. Rdzeń to część procesora odpowiedzialna za wykonanie strumienia instrukcji. Obecność kilku rdzeni pozwala procesorowi na jednoczesną pracę z kilkoma zadaniami, co ma pozytywny wpływ na wydajność. Początkowo każdy rdzeń fizyczny miał wykonywać jeden strumień instrukcji, a liczba strumieni odpowiadała liczbie rdzeni. Jednak obecnie istnieje sporo procesorów, które obsługują technologie wielowątkowości i są w stanie wykonywać dwa strumienie instrukcji jednocześnie na każdym rdzeniu. Patrz „Liczba wątków”, aby uzyskać więcej informacji.

W stacjonarnych procesorach 2 rdzenie (2 wątki) z reguły są typowe dla modeli budżetowych. 2 rdzenie (4 wątki) i 4 rdzenie są typowe dla niskobudżetowych modeli ze średniej półki cenowej. 4 rdzenie (8 wątków), 6 rdzeni, 6 rdzeni (12 wątków), 8 rdzeni to średnia półka cenowa. 8 rdzeni (16 wątków), 10 rdzeni, 12 rdzeni, 16 rdzeni i więcej to oznaki zaawansowanych modeli, w tym procesorów do serwerów i stacji roboczych.

Należy wziąć pod uwagę, że o rzeczywistych możliwoś...ciach procesora decyduje nie tylko dany parametr, ale także inne parametry – przede wszystkim seria i generacja/architektura (patrz odpowiednie punkty). Nierzadko zdarza się, że bardziej zaawansowany i/lub nowy dwurdzeniowy procesor jest mocniejszy niż czterordzeniowy układ starszej serii lub architektury. Dlatego sensowne jest porównywanie procesorów według liczby rdzeni w ramach tej samej serii i generacji.

Wielowątkowość

Obsługa przez procesor funkcji wielowątkowości.

W przypadku Intela to Hyper-threading, w przypadku AMD to SMT. Ta technologia służy do optymalizacji obciążenia każdego fizycznego rdzenia procesora. Jej kluczową zasadą (mówiąc z grubsza) jest to, że każdy taki rdzeń jest definiowany przez system jako 2 rdzenie logiczne – np. system „widzi” czterordzeniowy procesor jako ośmiordzeniowy. Jednocześnie każdy rdzeń fizyczny stale przełącza się między dwoma rdzeniami logicznymi, a właściwie między dwoma wątkami instrukcji: gdy w jednym wątku występuje opóźnienie (na przykład w przypadku błędu lub w oczekiwaniu na wynik poprzedniego polecenia), rdzeń nie jest bezczynny, a rozpoczyna wykonywanie instrukcji drugiego wątku. Dzięki tej technologii skraca się czas odpowiedzi procesora, a w systemach serwerowych zwiększa się stabilność przy dużej liczbie podłączonych użytkowników.

Częstotliwość TurboBoost / TurboCore

Maksymalna częstotliwość taktowania procesora, jaką można osiągnąć podczas pracy w trybie przetaktowania Turbo Boost lub Turbo Core.

Nazwa „Turbo Boost” jest używana dla technologii przetaktowania stosowanej przez firmę Intel, „Turbo Core” jest używana dla rozwiązań firmy AMD. Zasada działania w obu przypadkach jest taka sama: jeśli niektóre rdzenie nie są zaangażowane lub pracują pod obciążeniem poniżej maksymalnego, procesor może przenieść część obciążenia z obciążonych rdzeni na nie, zwiększając w ten sposób moc obliczeniową i wydajność. Praca w tym trybie charakteryzuje się wzrostem częstotliwości taktowania i jest to wskazane w tym przypadku.

Należy pamiętać, że mówimy o maksymalnej możliwej częstotliwości taktowania - nowoczesne procesory są w stanie dostosować tryb pracy w zależności od sytuacji, a przy stosunkowo niskim obciążeniu rzeczywista częstotliwość może być niższa niż maksymalna możliwa. Ogólne znaczenie tego parametru można znaleźć w rubryce „Częstotliwość zegara".

Pamięć podręczna L1

Rozmiar pamięci podręcznej poziomu 1 (L1) przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i ma pozytywny wpływ na wydajność systemu. Im większa pamięć podręczna, tym więcej danych można w niej przechowywać w celu szybkiego dostępu i wyższej wydajności. Pamięć podręczna poziomu 1 ma najwyższą wydajność i najmniejszy rozmiar - do 128 KB. Jest integralną częścią każdego procesora.

Pamięć podręczna L2

Rozmiar pamięci podręcznej poziomu 2 (L2) przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i pozytywnie wpływa na szybkość systemu. Im większa pojemność pamięci podręcznej — tym więcej danych może być w niej przechowywanych w celu szybkiego dostępu i wyższej wydajności. Objętość pamięci podręcznej L2 może wynosić do 12 MB, zdecydowana większość nowoczesnych procesorów ma taką pamięć podręczną.

Pamięć podręczna L3

Pojemność pamięci podręcznej poziomu 3 (L3), przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i ma pozytywny wpływ na wydajność systemu. Im większa pamięć podręczna, tym więcej danych można w niej przechowywać w celu szybkiego dostępu i wyższej wydajności.
Dynamika cen
Intel Core i7 Coffee Lake Refresh często porównują
Intel Core i7 Kaby Lake często porównują