Polska
Katalog   /   Telefony i komunikacja   /   Telefony i akcesoria   /   Telefony komórkowe

Porównanie Realme C2 2020 32 GB / 2 GB vs Realme C2 32 GB / 3 GB

Dodaj do porównania
Realme C2 2020 32 GB / 2 GB
Realme C2 32 GB / 3 GB
Realme C2 2020 32 GB / 2 GBRealme C2 32 GB / 3 GB
od 414 zł
Produkt jest niedostępny
od 469 zł
Produkt jest niedostępny
TOP sprzedawcy
Wyświetlacz
Charakterystyka wyświetlacza
6.1 "
1560х720 (19.5:9)
282 ppi
IPS
Gorilla Glass
6.1 "
1560х720 (19.5:9)
282 ppi
IPS
Gorilla Glass
Stosunek wyświetlacza do obudowy80 %80 %
Część sprzętowa
System operacyjnyAndroid 9.0Android 9.0
Model procesoraMediatek MT6762 Helio P22Mediatek MT6762 Helio P22
Częstotliwość procesora2 GHz2 GHz
Liczba rdzeni procesora
/4 + 4/
/4 + 4/
GPUPowerVR GE8320PowerVR GE8320
Pamięć RAM2 GB3 GB
Pamięć wbudowana32 GB32 GB
Slot na karty pamięcimicroSDmicroSD
Maks. pojemność karty256 GB256 GB
Liczba SIM2 SIM2 SIM
Rodzaj karty SIMnano-SIMnano-SIM
Wyniki testów
AnTuTu Benchmark78415 punkty(ów)77811 punkty(ów)
Geekbench3178 punkty(ów)
Aparat tylny
Liczba obiektywów2 moduły2 moduły
Obiektyw główny
13 MP
f/2.2
13 MP
f/2.2
Teleobiektyw
f/2.4
 
Obiektyw pomocniczy
 /2 Mpx/
Nagrywanie Full HD (1080p)++
Lampa błyskowa
Aparat przedni
Konstrukcjaw kształcie łezkiw kształcie łezki
Obiektyw główny5 MP5 MP
Wartość przysłonyf/2.2f/2.2
Nagrywanie w jakości Full HD (1080p)++
Komunikacja i złącza
Łączność
4G (LTE)
4G (LTE)
Komunikacja
Wi-Fi 4 (802.11n)
Bluetooth v 4.2
Wi-Fi 4 (802.11n)
Bluetooth v 4.2
Złącza
microUSB
mini Jack (3.5 mm)
wyjście słuchawkowe na dole
microUSB
mini Jack (3.5 mm)
wyjście słuchawkowe na dole
Funkcje i nawigacja
Funkcje i możliwości
brak czytnika linii papilarnych
Radio FM
redukcja szumów
żyroskop
latarka
 
Radio FM
redukcja szumów
żyroskop
latarka
Nawigacja
aGPS
Moduł GPS
kompas cyfrowy
aGPS
Moduł GPS
kompas cyfrowy
Zasilanie
Pojemność baterii4000 mAh4000 mAh
Szybkie ładowaniebrakbrak
Ładowanie bezprzewodowe
Dane ogólne
Materiał ramki / pokrywytworzywo sztuczne/tworzywo sztucznetworzywo sztuczne/tworzywo sztuczne
Tylna pokrywamatowamatowa
Wymiary (SxDxW)154.3x73.7x8.5 mm154.3x73.7x8.5 mm
Waga166 g166 g
Kolor obudowy
Data dodania do E-Kataloglistopad 2019lipiec 2019

Pamięć RAM

Parametr określa ogólną wydajność smartfona: im więcej pamięci RAM, tym szybciej urządzenie działa i tym lepiej radzi sobie z zadaniami i/lub wymagającymi aplikacjami (przy ceteris paribus). Jest to tym bardziej prawdziwe w świetle faktu, że duże ilości RAM-u są zwykle łączone z mocnymi zaawansowanymi procesorami. Jednak tylko urządzenia z identycznymi systemami operacyjnymi mogą być bezpośrednio porównywane ze sobą, a w przypadku Androida z tymi samymi wersjami i edycjami tego systemu operacyjnego (więcej informacji na ten temat podano w „System operacyjny”). Wynika to z faktu, że różne systemy operacyjne, a nawet różne wersje tego samego systemu operacyjnego mogą znacznie różnić się wymaganiami dotyczącymi pamięci RAM. Przykładowo iOS, dzięki dobrej optymalizacji pod konkretne urządzenia, jest w stanie wydajnie pracować z 3 GB RAM-u. W przypadku wersji Androida w edycji zwykłej (nie Go Edition) wspomniane 3 GB to tak naprawdę wymagane minimum. W takim systemie operacyjnym lepiej jest mieć co najmniej 4 GB lub 6 GB pamięci RAM. W high-endowych urządzeniach z potężnym elektronicznym wypełnieniem można spotkać bardziej imponujące wartości – 8 GB, a nawet 12 GB lub więcej.

Wyniki testów

Wyniki testów są podawane dla młodszego modelu w linii lub dla konkretnego modelu, co ma na celu lepsze zrozumienie wydajności modeli telefonów, jeśli porównujesz telefony według tych parametrów. Na przykład dla modelu 128 GB są wyniki testów, a dla modelu 256 GB nie ma informacji w sieci, w obu modelach zobaczysz tę samą wartość, co pozwoli zrozumieć ogólną wydajność urządzenia. Natomiast jeżeli redakcja dysponuje informacjami dla każdego poszczególnego modelu, to wyniki testów zostaną wpisane dla każdego modelu, a model z dużą ilością pamięci RAM będzie miał większe wartości.

AnTuTu Benchmark

Wynik wyświetlany przez urządzenie po przejściu testu wydajności (benchmark) AnTuTu Benchmark.

AnTuTu Benchmark to kompleksowy test zaprojektowany specjalnie dla urządzeń mobilnych, głównie smartfonów i tabletów. W czasie testów bierze się pod uwagę wydajność procesora, pamięci, grafiki i układów I/O, dając w ten sposób dość opisowe wrażenie możliwości systemu. Im lepszy wynik, tym więcej punktów zostanie przyznanych. Smartfony, które zdobyły ponad 750 tys. punktów, według rankingu AnTuTu, są uważane za wysokowydajne.

Jak w przypadku każdego testu porównawczego, test ten nie zapewnia absolutnej dokładności: to samo urządzenie może pokazywać różne wyniki, zwykle z odchyleniami w granicach 5-7%. Odchylenia te zależą od wielu czynników, które nie są bezpośrednio związane z systemem - od obciążenia urządzenia programami firm trzecich, a skończywszy na temperaturze powietrza podczas testów. Tak więc o znaczącej różnicy między dwoma modelami przychodzi mówić tylko wtedy, gdy różnica w ich działaniu wykracza poza wspomniane odchylenie.

Geekbench

Wynik wyświetlany przez urządzenie po przejściu testu wydajności (benchmark) Geekbench.

Geekbench to wyspecjalizowany test porównawczy przeznaczony dla procesorów. Od wersji 4.0 test dotyczy także akceleratorów graficznych, pod koniec 2019 roku benchmark został wydany pod numerem „5”. W specyfikacji gadżetów przenośnych podawane są zwykle dane o procesorze. Podczas testowania Geekbench symuluje obciążenia powstające przy wykonywaniu rzeczywistych zadań oraz uwzględnia zarówno możliwości pojedynczego rdzenia, jak i wydajność wielu rdzeni jednocześnie. Dzięki temu ostateczne wyniki są dobrym wskaźnikiem możliwości procesora w codziennym użytkowaniu. Ponadto test jest wieloplatformowy i umożliwia porównanie procesorów różnych urządzeń (smartfony, tablety, laptopy, komputery PC). W podstawowych informacjach podawane są tylko wartości testu wielordzeniowego dla procesora.

Teleobiektyw

Specyfikacja teleobiektywu aparatu głównego, zainstalowanego w telefonie.

Szczegóły te dotyczą wyłącznie aparatów z kilkoma obiektywami (patrz „Liczba obiektywów”) - i to nie wszystkich, lecz jedynie tych z „oczkiem” o dużej ogniskowej (zauważalnie większej niż w głównym obiektywie) i odpowiednio dużym powiększeniu. W tym punkcie mogą zostać ujęte cztery główne parametry: rozdzielczość, przysłona, ogniskowa oraz dodatkowe dane matrycy.

Rozdzielczość(w megapikselach, Mpx)
Rozdzielczość matrycy zastosowanej w teleobiektywie.

Najwyższa rozdzielczość uzyskanego obrazu zależy bezpośrednio od rozdzielczości czujnika; a wysoka rozdzielczość „obrazu” z kolei pozwala na lepsze wyświetlanie drobnych szczegółów. Z drugiej strony samo zwiększenie liczby megapikseli może prowadzić do pogorszenia ogólnej jakości obrazu - ze względu na mniejszy rozmiar każdego konkretnego piksela zwiększa się poziom szumów. W efekcie rozdzielczość samego aparatu ma niewielki wpływ na jakość nagrywania - wiele zależy też od wielkości matrycy, cech optyki oraz różnych konstrukcyjnych trików zastosowanych przez producenta.

Jeśli chodzi o rozdzielczość teleobiektywu, jest ona z reguły nieco niższa niż rozdzielczość głównej optyki (patrz „Główny obiektyw”) lub odpowiada samemu teleobiektywowi. Nie ma sensu przewidywać w tym przypadku wyższych wartości z wielu powodów - w szczególności dlatego, że szerokokątny główny obiekt...yw wymaga dość znacznej ilości pikseli do zoomu cyfrowego, a dla teleobiektywu nie jest to aż tak krytyczne. - sam w sobie posiada dość wysoki stopień przybliżenia.

Wartość przysłony
Przysłona opisuje zdolność obiektywu do przepuszczania światła. Jest zapisywana jako liczba ułamkowa, na przykład f/1,9. W tym przypadku im większa liczba w mianowniku, tym mniejsza apertura, czyli np. obiektyw f/2,6 przepuszcza mniej światła niż f/1,9.

Wysoki wartość przysłony daje aparatowi szereg zalet: pozwala fotografować przy niskich czasach otwarcia migawki, minimalizując możliwość „drgania”, a także ułatwia fotografowanie w słabym świetle oraz fotografowanie z artystycznym rozmyciem tła (bokeh). Jednak w przypadku teleobiektywu takie możliwości nie są tak ważne, jak w przypadku aparatu głównego - takie obiektywy mają zwykle określone przeznaczenie, a często bardziej pożądana jest w nich większa głębia ostrości, osiągana właśnie przy małej przysłonie. Tak więc, ogólnie rzecz biorąc, parametr ten jest bardziej odniesieniem niż praktycznie istotnym przy wyborze.

Długość ogniskowa
Ogniskowa to odległość między matrycą a środkiem obiektywu (ogniskowany do nieskończoności), przy którym na matrycy uzyskuje się najostrzejszy obraz. Jednak w przypadku smartfonów w specyfikacji nie wskazuje się rzeczywista, lecz tzw. ekwiwalentna ogniskową (EO) - wskaźnik umowny przeliczany za pomocą specjalnych formuł. Wskaźnik ten można wykorzystać do oceny oraz porównania aparatów z różnymi rozmiarami matryc (nie można do tego wykorzystać faktycznej ogniskowej, ponieważ przy innym rozmiarze czujnika ta sama rzeczywista ogniskowa będzie odpowiadać różnym kątom widzenia). (Należy również powiedzieć, że EO może być zauważalnie większe niż grubość obudowy- nie ma w tym nic niezwykłego, ponieważ jest to wskaźnik umowny, a nie rzeczywisty).

Tak czy inaczej, kąt widzenia i stopień powiększenia zależą bezpośrednio od EO: większa ogniskowa daje mniejszy kąt widzenia i większy rozmiar pojedynczych obiektów, które wpadają w kadr, natomiast zmniejszenie tej odległości z kolei pozwala na pokrycie większej przestrzeni. A ponieważ teleobiektywy muszą zapewniać większe powiększenie niż standardowe obiektywy, z definicji mają one dłuższą ogniskową. Jednak pod kontem porównania z klasycznymi teleobiektywami dla aparatów cyfrowych odległość ta jest niewielka - około 50 - 60 mm, a nawet mniej niż 40 mm (co dla konwencjonalnego aparatu odpowiada optyce średnio ogniskowej i szerokokątnej). Nie można tego jednak nazwać wadą, biorąc pod uwagę specyfikę nagrywania na smartfonach. Poza tym zdarzają się wyjątki - smartfony z optyką „dalekiego zasięgu” 80 mm lub więcej, co jest już całkiem przyzwoitym wskaźnikiem dla tradycyjnego aparatu.

Kąt widzenia(w stopniach) Kąt widzenia charakteryzuje wielkość przestrzeni zajmowanej przez obiektyw, a także wielkość poszczególnych obiektów „widzianych” przez kamerę. Im większy ten kąt, tym większa część sceny wpada w kadr, jednak tym mniejsze są poszczególne obiekty na obrazie. Kąt widzenia jest bezpośrednio związany z ogniskową (patrz wyżej): zwiększenie tej odległości zawęża pole widzenia obiektywu i odwrotnie.

Należy pamiętać, że parametr ten jest powszechnie uważany za ważny dla profesjonalnego używania aparatu, lecz nie dla fotografii amatorskiej. Dlatego dane o kącie widzenia podawane są głównie dla smartfonów wyposażonych w zaawansowane aparaty - m.in. w celu podkreślenia w ten sposób wysokiej klasy aparatów. W szczególności w teleobiektywach kąty te są stosunkowo małe - przypomnijmy, że duże powiększenie w takiej optyce uzyskuje się właśnie dzięki zawężeniu pola widzenia. W większości przypadków wielkość tego pola mieści się w przedziale 45 - 52 °.

Dodatkowe dane dotyczące matrycy
Dodatkowe informacje dotyczące matrycy zainstalowanej w teleobiektywie. Ta pozycja może wskazywać zarówno rozmiar przekątnej (w calach), jak i model czujnika, a czasami oba parametry jednocześnie. W każdym razie takie dane są dostarczane, jeśli urządzenie jest wyposażone w wysokiej jakości matrycę, która wyraźnie wyróżnia się na ogólnym tle. Z modelem wszystko jest dość proste: znając nazwę czujnika, można znaleźć szczegółowe dane na jego temat. Rozmiar należy rozważyć bardziej szczegółowo.

Przekątna matrycy jest tradycyjnie oznaczana w ułamkach części cala - odpowiednio, na przykład czujnik na 1/3,4" będzie większy niż 1/4". Większe czujniki są uważane za bardziej zaawansowane, ponieważ zapewniają lepszą jakość obrazu przy tej samej rozdzielczości. Wynika to z faktu, że ze względu na większą powierzchnię sensora każdy pojedynczy piksel jest też większy i dociera do niego więcej światła, co poprawia czułość i redukuje szumy. Oczywiście faktyczna jakość obrazu będzie zależała również od szeregu innych parametrów, lecz generalnie większy rozmiar matrycy oznacza zwykle bardziej zaawansowany aparat. Trzeba jednak powiedzieć, że w teleobiektywach sensory są generalnie zauważalnie mniejsze niż w głównych obiektywach - np. wspomniane 1/3,4" i 1/4" to dość powszechne warianty. Wynika to głównie z drugorzędnej roli takich aparatów - małe matryce są tańsze. Ponadto przy nagrywaniu z dużej odległości z wielu powodów duży sensor nie jest tak ważny jak w przypadku zwykłego aparatu.

Funkcje i możliwości

Dodatkowe funkcje i możliwości urządzenia.

We współczesnych telefonach komórkowych (zwłaszcza smartfonach) może być przewidziana bardzo rozbudowana dodatkowa funkcjonalność. Mogą to być zarówno zwyczajne funkcje, z których wiele jest bezpośrednio związanych z pierwotnym przeznaczeniem urządzenia, jak i raczej nowe i/lub nietypowe funkcje. Do pierwszej kategorii można odnieść przycisk wezwania pomocy (często występujący w telefonach dla seniorów), redukcję szumów, odbiornik FM, diodę powiadomień, prostą latarkę i czujnik światła. Druga kategoria obejmuje skaner twarzy i skaner linii papilarnych(ten ostatni może być umiejscowiony na tylnej pokrywie, panelu bocznym, przednim, a nawet bezpośrednio na ekranie), żyroskop, zaawansowaną pełnowartościową latarkę, dźwięk stereo, obsługę rozszerzonej rzeczywistości, a nawet tak egzotyczne rzeczy jak barometr. Oto bardziej szczegółowy...opis każdego wariantu:

- Skaner twarzy (FaceID). Specjalna technologia rozpoznawania twarzy użytkownika nie tyko za sprawą fotografowania, lecz także dzięki budowie trójwymiarowego modelu twarzy na podstawie danych ze specjalnego modułu na panelu przednim. Technologia ta jest stale udoskonalana, obecnie jest w stanie uwzględnić zmianę fryzury i zarostu, obecność okularów, makijażu itp. Jednocześnie rozpoznawanie bliźniaków i twarzy dzieci pozostają słabymi punktami (mają mniej cech indywidualnych niż u osób dorosłych). Głównym zastosowaniem skanera twarzy jest uwierzytelnianie przy odblokowywaniu smartfona, logowaniu do aplikacji, dokonywaniu płatności itp. Jednocześnie możliwe są inne, bardziej oryginalne scenariusze użycia. Na przykład, w niektórych aplikacjach skaner twarzy odczytuje wyraz twarzy użytkownika, a następnie ten wyraz jest powtarzany przez twarz na ekranie telefonu.

- Skaner odcisków palców. Czytnik linii papilarnych. Służy głównie do autoryzacji użytkownika - np. przy odblokowywaniu urządzenia, przy logowaniu do określonych aplikacji lub kont, przy potwierdzaniu płatności itp. Jeśli chodzi o różne warianty umiejscowienia, to najbardziej popularne są obecnie skanery umiejscowione w tylnej obudowie urządzenia - taki czujnik można dotknąć palcem wskazującym, nie puszczając smartfona i praktycznie bez zmiany chwytu. Skaner na bocznej ściance działa w podobny sposób, lecz aby go uruchomić, nie wystarczy go po prostu dotknąć, należałoby przesunąć po nim palcem. Taki format pracy ma na celu uniknięcie wystąpienia fałszywych detekcji przy normalnym trzymaniu (zwykle skaner znajduje się tuż pod kciukiem prawej ręki), co więcej, niewielka powierzchnia czujnika nie pozwala na odczytanie wystarczająco dużego fragmentu odcisku palca bez poruszania palcem. Z kolei, czujniki na przednim panelu były jakiś czas temu dość popularne - w szczególności dzięki Apple, które jako pierwsze zaimplementowało rozpoznawanie odcisków palców w swoich gadżetach; jabłkowe smartfony nadal używają właśnie tradycyjnego wariantu skanera, zlokalizowanego z przodu. Jednakże taka lokalizacja nieuchronnie zwiększa rozmiar dolnej ramki, więc w dzisiejszych czasach coraz większą popularność zyskuje inny wariant - skanery umieszczane bezpośrednio w ekranie (a dokładniej pod matrycą ekranu) nie zajmujące dodatkowego miejsca na panelu przednim.

- Google AR Core. Obsługa przez smartfon rozszerzonej rzeczywistości (AR) Google AR Core. Ta technologia jest używana do pracy z AR w smartfonach z systemem Android. Więcej informacji na temat rzeczywistości rozszerzonej i technologii specjalnych można znaleźć poniżej.

- Apple AR Kit. Obsługa przez smartfon rozszerzonej rzeczywistości (AR) Apple AR Kit. Ta technologia jest używana do pracy z AR w smartfonach Apple pracujących na iOS. Więcej informacji na temat rzeczywistości rozszerzonej i technologii specjalnych można znaleźć poniżej.

- Obsługa specjalnych technologii rzeczywistości rozszerzonej. Ogólna idea rzeczywistości rozszerzonej (AR) polega na dodaniu do obrazu świata rzeczywistego, widzianego na ekranie urządzenia, pewnych dodatkowych elementów „wbudowanych” w świat rzeczywisty i wyglądających jak jego część. Jednym z najbardziej znanych przykładów AR jest gra Pokemon Go, w której gracz używa aparatu, aby wyszukiwać wirtualnych Pokemonów w prawdziwym terenie. Inne warianty zastosowania to funkcje - nawigacja (wyświetlanie „linii prowadzącej” bezpośrednio na ekranie smartfona nad obrazem z kamery), aranżacja wnętrz (możliwość wirtualnego dopasowania obiektu do istniejącego otoczenia), naprawa samochodu (podkreślenie kluczowych części, "widzenie rentgenowskie") itd. Jednak w tym przypadku chodzi nie tylko o możliwość pracy z aplikacjami AR, ale też o obsługę specjalnych technologii rozszerzonej rzeczywistości - najczęściej Google AR Core lub Apple AR Kit. Specyfika tych technologii polega na tym, że rozszerzają one możliwości dostępne zarówno dla użytkowników, jak i dla twórców oprogramowania. Dzięki temu użytkownicy uzyskują obszerniejszy zestaw aplikacji AR z bardziej zaawansowanymi funkcjami; a twórcami takich aplikacji mogą być nie tylko duże firmy, lecz prawie wszyscy, w tym indywidualni specjaliści.

- Dźwięk stereo. Możliwość odtwarzania pełnowartościowego dźwięku stereo przez własne głośniki telefonu, bez zewnętrznych urządzeń audio. Do tego zadania potrzeba co najmniej dwa głośniki. Komplikuje to konstrukcję i zwiększa jej koszt, lecz ma pozytywny wpływ na jakość dźwięku: jest bardziej wyrazisty i szczegółowy niż przy użyciu jednego głośnika, ma efekt trójwymiarowości, a także wyższy poziom głośności.

- Odbiornik FM. Wbudowany moduł do odbioru stacji radiowych, nadających w zakresie FM. Niektóre urządzenia obsługują też inne zakresy, jednak to właśnie FM cieszy się obecnie największą popularnością (ze względu na możliwość przekazywania dźwięku stereo), zatem właśnie w nim najczęściej nadają stacje muzyczne. Należy pamiętać, że niektóre urządzenia mogą wymagać podłączenia słuchawek przewodowych, aby móc zapewnić niezawodny odbiór - ich kabel pełni rolę anteny zewnętrznej.

- Dioda powiadomień. Fizycznie odseparowany sygnalizator świetlny, pulsujący lub stale świecący w odpowiedzi na przychodzące powiadomienia o nieodebranych połączeniach i odebranych wiadomościach (w tym od komunikatorów internetowych i klientów sieci społecznościowych). Ponadto lampka ta zwykle sygnalizuje niski poziom naładowania baterii smartfona i zapala się w trakcie procedury uzupełniania baterii. Sposób realizacji wskaźnika powiadomień może się różnić: dla niektórych telefonów jest jednokolorowy, dla innych posiada kolorowe kodowanie sygnałów, które można elastycznie regulować dla określonych wydarzeń poprzez menu ustawień. Wskaźnik umożliwia wizualną ocenę obecności przychodzących powiadomień bez konieczności włączania ekranu smartfona.

- Przycisk połączenia alarmowego. Osobny przycisk, przeznaczony do użycia w nagłych wypadkach. Konkretna funkcjonalność takiego przycisku może się różnić w zależności od modelu: wysyłanie „alarmujących” SMS-ów na wybrane numery, automatyczne odbieranie połączeń z tych numerów lub dzwonienie po kolei, włączanie syreny itp. W każdym przypadku przycisk alarmowy jest zwykle dobrze widoczny, a jego obecność jest szczególnie przydatna, gdy telefon jest używany przez osobę starszą (w rzeczywistości w specjalistycznych urządzeniach przeznaczonych dla osób w podeszłym wieku funkcja ta jest wręcz obowiązkowa).

- Redukcja szumów. Filtr elektroniczny, który oczyszcza głos użytkownika z zewnętrznego hałasu (odgłosy ulicy, szum wiatru w kratce mikrofonu itp.). Tym samym rozmówca na drugim końcu linii słyszy tylko głos, praktycznie bez zbędnych dźwięków. Oczywiście żaden system redukcji szumów nie jest doskonały; jednak w większości przypadków funkcja ta znacznie poprawia jakość głosu przekazywanego przez telefon do rozmówcy.

- Żyroskop. Urządzenie, które śledzi obroty telefonu komórkowego w przestrzeni. Współczesne żyroskopy z reguły pracują na wszystkich trzech osiach i są w stanie rozpoznać zarówno kąt, jak i prędkość obrotu; dodatkowo funkcja ta niemalże zawsze zakłada obecność akcelerometru, który pozwala (między innymi) określić wstrząsy i nagłe przesunięcia obudowy. Zapewnia to zaawansowane możliwości sterowania - w szczególności nie da się obejść bez żyroskopów przy pracy z rozszerzoną rzeczywistością (patrz wyżej) lub przy korzystaniu z okularów VR, w których umieszcza się smartfon.

- Pełnowartościowa latarka. Obecność w telefonie zaawansowanej latarki - mocniejszej i bardziej funkcjonalnej niż zwykła (patrz wyżej). Konkretna konstrukcja i możliwości takiej latarki mogą się różnić. Tak więc, w niektórych urządzeniach w górnym rogu znajduje się osobna dioda LED (lub zestaw diod LED), to źródło światła służy wyłącznie jako latarka. W tych innych (głównie smartfonach) chodzi o specjalną konstrukcję lampy błyskowej: która składa się z kilku diod LED, z których tylko niektóre są zwykle używane do oświetlenia przy nagrywaniu, a wszystkie na raz włączają się przy uruchomieniu latarki. Dodatkowa funkcjonalność takiego źródła światła może obejmować wskaźnik laserowy, ogniskowanie wiązki, sterowanie jasnością itp. W każdym razie większość modeli z tą funkcją należy do wytrzymałych urządzeń o podwyższonej odporności na kurz, wilgoć i uderzenia (są jednak wyjątki).

- Czujnik światła. Czujnik, monitorujący poziom światła w otoczeniu. Służy głównie do automatycznej regulacji jasności ekranu: w jasnym otoczeniu jasność podnosi się, aby obraz pozostawał widoczny, a o zmierzchu i ciemności maleje, co oszczędza energię baterii i zmniejsza zmęczenie oczu.

- Barometr. Czujnik do pomiaru ciśnienia atmosferycznego. Sam barometr określa tylko ciśnienie w czasie rzeczywistym, lecz sposoby wykorzystania tych danych mogą się różnić w zależności od oprogramowania zainstalowanego w telefonie. Na przykład niektóre aplikacje nawigacyjne mogą określać różnicę wysokości między poszczególnymi punktami na ziemi na podstawie różnicy ciśnienia atmosferycznego w tych punktach; a w programach meteorologicznych dane barometryczne mogą poprawić dokładność prognoz pogody. Funkcja ta przyda się również osobom wrażliwym na pogodę: sygnalizuje zmianę pogody, pozwalając dokładniej określić przyczynę dolegliwości i podjąć działania w celu ich wyeliminowania.
Realme C2 2020 często porównują
Realme C2 często porównują