Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Dyski SSD

Porównanie Samsung 850 MZ-7LN120BW 120 GB vs Silicon Power Slim S70 SP120GBSS3S70S25 120 GB

Dodaj do porównania
Samsung 850 MZ-7LN120BW 120 GB
Silicon Power Slim S70 SP120GBSS3S70S25 120 GB
Samsung 850 MZ-7LN120BW 120 GBSilicon Power Slim S70 SP120GBSS3S70S25 120 GB
od 305 zł
Produkt jest niedostępny
od 207 zł
Produkt jest niedostępny
TOP sprzedawcy
Typwewnętrznywewnętrzny
Pojemność120 GB120 GB
Format2.5"2.5"
InterfejsSATA 3SATA 3
Specyfikacja
KontrolerSamsung MGX
Pamięć buforowa256 MB
Sposób zapisywania danych3D TLC NANDMLC
Zewnętrzna prędkość zapisu520 MB/s507 MB/s
Zewnętrzna prędkość odczytu540 MB/s557 MB/s
Wytrzymałość na wstrząsy w czasie pracy1500 G1500 G
Średni czas bezawaryjnej pracy1.5 mln. g
Losowy zapis IOPS70 tys.60 tys.
Losowy odczyt IOPS88 tys.70 tys.
TBW75 TB96 TB
DWPD0.58 razy/dziennie0.4 razy/dziennie
Gwarancja producenta3 lata5 lat
Dane ogólne
TRIM
Wymiary70x100x7 mm100x69.8x7 mm
Waga55 g63 g
Kolor obudowy
Data dodania do E-Katalogstyczeń 2018październik 2012

Kontroler

Model kontrolera zainstalowanego w dysku SSD.

Kontroler jest obwodem sterującym, który w rzeczywistości zapewnia wymianę informacji między komórkami pamięci a komputerem, do którego podłączony jest dysk. Możliwości jednego lub drugiego modułu SSD (w szczególności prędkość odczytu i zapisu) w dużej mierze zależą od tego konkretnego obwodu. Znając model kontrolera można znaleźć szczegółowe dane na jego temat oraz ocenić możliwości dysku. Do prostego codziennego użytku informacje te zwykle nie są potrzebne, ale dla profesjonalistów i entuzjastów (moderów, overclockerów) mogą się przydać.

Obecnie wysokiej klasy kontrolery produkowane są głównie pod markami: InnoGrit, Maxio, Phison, Realtek, Silicon Motion, Samsung.

Pamięć buforowa

Pamięć buforowa to mały chip na dysku SSD, który przesyła dane między dyskiem a płytą główną. W rzeczywistości działa jako rodzaj pośredniego łącza między pamięcią RAM komputera a własną pamięcią stałą dysku. Bufor służy do przechowywania najczęściej żądanych danych z modułu, tym samym skracając czas dostępu do nich – informacje są przesyłane z pamięci podręcznej, a nie odczytywane z nośnika magnetycznego. Z reguły im większy rozmiar bufora, tym wyższa wydajność dysku, pod warunkiem, że pozostałe parametry są podobne. Ponadto dyski z dużą ilością pamięci buforowej zmniejszają obciążenie procesora.

Sposób zapisywania danych

Rodzaj pamięci głównej napędu określa specyfikę rozmieszczenia informacji między komórkami sprzętowymi i fizyczne cechy samych komórek.

MLC. Pamięć Multi Level Cell oparta na komórkach wielopoziomowych, z których każda zawiera kilka poziomów sygnału. Komórki pamięci MLC przechowują 2 bity informacji. Posiada optymalne wskaźniki niezawodności, zużycia energii i wydajności. Do niedawna technologia ta była popularna w modułach SSD klasy podstawowej i średniej, teraz jest stopniowo zastępowana przez bardziej zaawansowane warianty, takie jak TLC lub 3D MLC.

TLC. Ewolucja technologii MLC. Jedna pamięć pamięci flash Triple Level Cell może przechowywać 3 bity informacji. Taka gęstość zapisu nieznacznie zwiększa prawdopodobieństwo błędów w porównaniu z MLC, ponadto pamięć TLC jest uważana za mniej trwałą. Pozytywną cechą tej technologii jest jej przystępna cena, a różne poprawki konstrukcyjne mogą zostać zastosowane w celu poprawy niezawodności dysków SSD z pamięcią TLC.

3D NAND. W strukturze 3D NAND kilka warstw komórek pamięci jest ułożonych pionowo, a między nimi organizowane są wzajemne połączenia. Zapewnia to większą pojemność pamięci bez zwiększania fizycznego rozmiaru dysku i poprawia wydajność pamięci dzięki krótszym połączeniom każdej komórki pamięci. W dyskach SSD pamięć 3D NAND może wykorzystywać układy MLC, TLC lub QLC — więcej szczegółów...na ich temat znajdziesz w odpowiednich rozdziałach.

3D MLC NAND. Pamięć MLC o wielowarstwowej strukturze - jej komórki są umieszczone na płycie nie na jednym poziomie, lecz na kilku „piętrach”. W rezultacie producenci osiągnęli podwyższenie pojemności napędów bez zauważalnego zwiększenia wymiarów. Ponadto pamięć 3D MLC NAND charakteryzuje się wyższymi wskaźnikami niezawodności niż oryginalna MLC (patrz odpowiedni punkt), przy niższych kosztach produkcji.

3D TLC NAND. „Trójwymiarowa” modyfikacja technologii TLC (patrz odpowiedni punkt) z umieszczeniem komórek pamięci na płycie w kilku warstwach. Taki układ pozwala na większe pojemności przy mniejszych rozmiarach samych napędów. W produkcji taka pamięć jest prostsza i tańsza niż pamięć jednowarstwowa.

3D QLC NAND. Rodzaj pamięci flash z czteropoziomowymi komórkami (Quad Level Cell), zapewniającymi 4 bity danych w każdej komórce. Technologia ta ma na celu upowszechnienie dysków SSD o dużych pojemnościach i bezpowrotne wysłanie tradycyjnych dysków twardych na emeryturę. W konfiguracji 3D QLC NAND pamięć jest budowana według schematu „wielopoziomowego” z rozmieszczeniem komórek na płycie w kilku warstwach. Konstrukcja „trójwymiarowa” obniża koszty produkcji modułów pamięci i pozwala na zwiększenie pojemności dysków bez wpływu na ich wagę i rozmiar.

3D XPoint. Zupełnie nowy rodzaj pamięci, radykalnie różny od tradycyjnej pamięci NAND. W takich napędach komórki pamięci oraz selektory znajdują się na przecięciach prostopadłych rzędów ścieżek przewodzących. Mechanizm zapisywania informacji do komórek bazuje na zmianie rezystancji materiału bez użycia tranzystorów. Pamięć 3D XPoint jest prosta i niedroga w produkcji oraz oferuje znacznie większą szybkość i trwałość. Przedrostek „3D” w nazwie technologii mówi, że komórki na krysztale są ułożone w kilku warstwach. Pierwsza generacja 3D XPoint otrzymała dwuwarstwową strukturę i została wykonana w 20-nanometrowej technologii procesowej.

Zewnętrzna prędkość zapisu

Najwyższa prędkość zapisu charakteryzuje prędkość, z jaką moduł może odbierać informacje z podłączonego komputera (lub innego urządzenia zewnętrznego). Ta prędkość jest ograniczona zarówno przez interfejs połączenia (patrz „Złącze”), jak i przez funkcje samego urządzenia.

Zewnętrzna prędkość odczytu

Najwyższa prędkość wymiany danych z komputerem (lub innym urządzeniem zewnętrznym), jaki może zapewnić dysk w trybie odczytu; Mówiąc najprościej - najwyższa prędkość przesyłania informacji z dysku do urządzenia zewnętrznego. Ta prędkość jest ograniczona zarówno przez interfejs połączenia (patrz „Złącze”), jak i przez funkcje samego urządzenia. Jego wartości mogą wahać się od 100 - 500 MB/s w najwolniejszych modelach do ponad 3 GB/s w najbardziej zaawansowanych.

Średni czas bezawaryjnej pracy

Średni czas bezawaryjnej pracy - czas, w którym urządzenie jest w stanie pracować bez przerw bez awarii i usterek; innymi słowy, czas pracy, po którym występuje duże prawdopodobieństwo awarii.

Z reguły charakterystyka ta wskazuje pewien średni czas, wynikający z rezultatów testów umownych. Dlatego rzeczywista wartość tego parametru może różnić się od deklarowanej w tym czy innym kierunku; jednak w praktyce kwestia ta nie jest szczególnie istotna. Faktem jest, że w przypadku nowoczesnych dysków SSD MTBF jest obliczany w milionach godzin, a 1 milion godzin odpowiada ponad 110 latom - i mówimy o czystym czasie działania. Tak więc z praktycznego punktu widzenia trwałość dysku jest często ograniczona przez bardziej szczegółowe parametry - TBW i DPWD (patrz poniżej); a gwarancja producenta nie przekracza kilku lat. Jednak dane dotyczące średniego czasu działania w godzinach mogą się również przydać przy wyborze: jeśli pozostałe parametry są podobne, więcej czasu oznacza większą niezawodność i żywotność dysku SSD jako całości.

Losowy zapis IOPS

Wskaźnik IOPS który zapewnia dysk w trybie zapisu.

Termin IOPS odnosi się do największej liczby operacji wejścia/wyjścia, które moduł SSD może wykonać w ciągu sekundy, w tym przypadku podczas zapisywania danych. Wskaźnik ten jest często używany do oceny prędkości dysku; jednak nie zawsze jest to prawda. Po pierwsze, wskaźnikiIOPS różnych producentów mogą być mierzone na różne sposoby - przez wartość maksymalną, przez średnią, przez zapis losowy, zapis sekwencyjny itp. Po drugie, zalety wysokich IOPS stają się zauważalne dopiero przy określonych operacjach - w szczególności jednoczesne kopiowanie dużej liczby plików. Ponadto w praktyce prędkość dysku może być ograniczona przez system, do którego ten dysk jest podłączony. W świetle tego wszystkiego, generalnie dozwolone jest porównywanie różnych modułów SSD pod względem IOPS, ale prawdziwa różnica w wydajności najprawdopodobniej nie jest tak zauważalna, jak różnica w liczbach.

Jeśli chodzi o konkretne wartości, dla trybu zapisu z IOPS do 50 tys. Jest to relatywnie skromne, 50 - 100 tys. - średnie, ponad 100 tys. - wysokie.

Losowy odczyt IOPS

Wskaźnik IOPS który zapewnia dysk w trybie odczytu.

Termin IOPS odnosi się do największej liczby operacji wejścia/wyjścia, które moduł SSD może wykonać w ciągu sekundy, w tym przypadku podczas odczytu z niego danych. Wskaźnik ten jest często używany do oceny prędkości dysku; jednak nie zawsze jest to prawda. Po pierwsze, wskaźniki IOPS różnych producentów mogą być mierzone na różne sposoby - przez wartość maksymalną, przez średnią itp. Po drugie, zalety wysokiego IOPS stają się zauważalne dopiero przy pewnych określonych operacjach - w szczególności kopiowaniu dużej liczby plików jednocześnie. Ponadto w praktyce prędkość dysku może być ograniczona przez system, do którego ten dysk jest podłączony. W świetle tego wszystkiego, generalnie dozwolone jest porównywanie różnych modułów SSD pod względem IOPS, ale prawdziwa różnica w wydajności najprawdopodobniej nie jest tak zauważalna, jak różnica w liczbach.

Dla nowoczesnych dysków SSD w trybie odczytu wskaźnik IOPS poniżej 50 tysięcy jest uważany za bardzo skromny wskaźnik, w większości modeli parametr ten mieści się w przedziale 50 - 100 tysięcy , ale są też liczby wyższe .

TBW

TBW oznacza średni czas dysku między awariami, wyrażony w terabajtach. Innymi słowy, jest to ogólna ilość informacji, które można zapisać (nadpisać) w danym module. Wskaźnik ten pozwala ocenić ogólną niezawodność i żywotność dysku im wyższa wartość TBW, tym dłużej urządzenie będzie działać przy pozostałych warunkach równych.

Należy pamiętać, że znając TBW i okres gwarancji, można obliczyć liczbę dziennych nadpisań (DWPD, patrz odpowiedni punkt), jeśli producent nie określił tych danych. Aby to zrobić, należy użyć wzoru: DWPD = TBW / (V * T * 365), gdzie V to pojemność pamięci w terabajtach, T to okres gwarancji (lata). Jeśli chodzi o konkretne liczby, na rynku dostępnych jest wiele dysków o stosunkowo niskim TBW — do 100 TB; nawet te wartości są często wystarczające do codziennego użytku przez dłuższy czas. Jednakże modele z TBW na poziomie 100 – 500 TB są bardziej powszechne. Wartości 500 – 1000 TB można zaliczyć do „ponadprzeciętnych”, a w najbardziej niezawodnych rozwiązaniach liczba ta jest jeszcze wyższa .
Samsung 850 często porównują
Silicon Power Slim S70 często porównują