Польща
Каталог   /   Комп'ютерна техніка   /   Мережеве обладнання   /   Комутатори

Порівняння Aruba 3810M-16SFP+ vs Cisco SG350XG-24F

Додати до порівняння
Aruba 3810M-16SFP+
Cisco SG350XG-24F
Aruba 3810M-16SFP+Cisco SG350XG-24F
Порівняти ціни 2
від 12 878 zł
Товар застарів
ТОП продавці
Головне
Оснащений двома вільними слотами для підключення високошвидкісних модулів, до 8 SFP+ або до 2 40GBE портів.
Типкерований 3 рівні (L3)керований 3 рівні (L3)
Форм-фактормонтується в стійкумонтується в стійку
Порти
10 Gigabit Ethernet2 шт
SFP+ (оптика)16 шт
22 шт /x2 combo/
Uplink2 шт
Тип UplinkSFP+
Консольний порт
 /RS-232C/Micro USB/
Функції та можливості
Управління
SSH
Telnet
Web-інтерфейс
SNMP
SSH
Telnet
Web-інтерфейс
SNMP
Базові можливості
DHCP-сервер
підтримка стекування /до 10 комутаторів/
Link Aggregation
VLAN
захист від петель
обмеження швидкості доступу
DHCP-сервер
підтримка стекування
Link Aggregation
VLAN
захист від петель
 
Маршрутизація
Статична
Стандарти
RIP
OSPF
BGP
 
 
 
Інше
Блок живленнявбудованийвбудований
Габарити (ШхГхВ)443x431x44 мм440x350x44 мм
Вага7230 г4160 г
Дата додавання на E-Katalogлистопад 2019вересень 2019

10 Gigabit Ethernet

Кількість стандартних мережевих роз'ємів RJ-45 формату 10Gigabit Ethernet, передбачене в конструкції комутатора.

Цей формат належить до професійних: він забезпечує швидкості до 10 Гбіт/с (що і відображено в назві) і призначається переважно для завдань, пов'язаних з обробкою великих обсягів трафіку. Тим не менш, підтримка Gigabit Ethernet в наш час зустрічається навіть у мережних контролери ПК і ноутбуків, не кажучи вже про більш спеціалізованій техніці. А кількість роз'ємів відповідає числу пристроїв, яке можна безпосередньо підключити до комутатора з цього інтерфейсу. При цьому варто враховувати, що в деяких «свичах» окремі роз'єми даного типу поєднуються з оптичними SFP або SFP+ (див. нижче). Такі роз'єми мають маркування «combo» та враховуються при підрахунку RJ-45, так і при підрахунку SFP/SFP+.

SFP+ (оптика)

Кількість оптичних портів SFP+, передбачена в конструкції комутатора. Відразу уточнимо, що мова йде про звичайні мережеві порти; входи Uplink також можуть використовувати цей інтерфейс, проте їх кількість навіть в цьому разі вказується окремо (див. нижче).

Загальними перевагами оптоволокна перед звичайним Ethernet-кабелем є велика дальність зв'язку і нечутливість до електромагнітних перешкод. А конкретно SFP + являє собою розвиток оригінального стандарту SFP; в комутаторах такі роз'єми стандартно працюють на швидкості 10 Гбіт/с. Що стосується кількості таких портів, то при всіх своїх перевагах оптоволокно в мережевому обладнанні все ж використовується досить рідко. Тому найбільшого поширення отримали комутатори на 1 – 2, рідше 4 роз'єми SFP+, хоча зустрічається і більша кількість. Також варто враховувати, що в комутаторах можуть використовуватися так звані combo-роз'єми, що поєднують SFP+ і RJ-45; наявність таких портів уточнюється у примітках, вони враховуються як при підрахунку RJ-45, і при підрахунку SFP+.

Uplink

Кількість роз'ємів Uplink, передбачене в конструкції комутатора.

«Uplink» в даному випадку — це не тип, а спеціалізація роз'єму: так називають мережний інтерфейс, через який комутатор (і підключені до нього мережеві пристрої) зв'язуються з зовнішніми мережами (включаючи Інтернет) або сегментами мережі. Іншими словами, це свого роду «ворота», через які весь трафік з сегмента мережі, що обслуговується комутатором, передається далі. Uplink, зокрема, може використовуватися для підключення до аналогічного «свичу» (для горизонтального розширення мережі) або до пристрою більш високого рівня (зразок комутатора ядра).

Відповідно, кількість роз'ємів Uplink — це максимальне число зовнішніх підключень, яке може забезпечити комутатор без використання додаткового обладнання. Конкретний тип такого роз'єму може бути різним, проте зазвичай це один з різновидів LAN або SFP; докладніше див. «Тип Uplink».

Тип Uplink

Тип роз'єму (роз'ємів), що використовується в комутаторі в якості інтерфейсу Uplink.

Докладніше про такий інтерфейс див. вище; тут же відзначимо, що в якості Uplink зазвичай використовуються такі ж мережеві порти, як і для підключення до комутатора окремих пристроїв. Ось основні варіанти таких роз'ємів:

— Fast Ethernet — мережевий роз'єм LAN (під «виту пару») з підтримкою швидкості до 100 Мбіт/с. Така швидкість вважається невисокою за сучасними мірками, тоді як порт Uplink висуває підвищені вимоги до пропускної здатності — адже через нього йде трафік від всіх пристроїв, що обслуговуються комутатором. Тому в такій ролі порти Fast Ethernet використовуються переважно в недорогих і застарілих моделях.

— Gigabit Ethernet — роз'єм LAN з підтримкою швидкості до 1 Гбіт/с. Такої швидкості нерідко буває достатньо навіть для досить великої мережі, при цьому самі роз'єми коштують порівняно недорого.

– 2.5 Gigabit Ethernet – роз'єм LAN з підтримкою швидкостей до 2.5 Гбіт/с.

— 10Gigabit Ethernet — роз'єм LAN з підтримкою швидкості до 10 Гбіт/с. Такі можливості дають змогу комфортно працювати навіть з дуже великими об'ємами трафіку, однак помітно впливають на ціну комутатора. Тому даний варіант зустрічається рідко, переважно у висококласних моделях.

— SFP. Роз'єм під оптоволоконний кабель, що підтримує швидкість близько 1 Гбіт/с. При цьому перед Gigabit Ethernet, що має аналогічну...пропускну здатність, такий роз'єм має одну помітну перевагу – більшу дальність підключення (зазвичай до 550 м).

– SFP+. Розвиток описаного вище стандарту SFP. У комутаторах зазвичай передбачається швидкість підключення до 10 Гбіт/с; як і оригінальний стандарт, помітно перевершує за ефективною дальністю підключення Ethernet. З іншого боку, реальна необхідність у таких швидкостях виникає не так часто, а обходиться SFP+ досить дорого. Тому наявність таких роз'ємів Uplink характерна переважно для висококласних моделей з великою кількістю портів.

– SFP28. Черговий розвиток SFP із підвищеною пропускною здатністю до 25 Гбіт/с.

– QSFP / QSFP+. Найбільш швидкісні SFP аж до 40 Гбіт/с.

Зазначимо також, що описані вище роз'єми (крім хіба що Fast Ethernet) рідко застосовуються як єдиний тип входу Uplink. Помітно більшого поширення отримали поєднання електричних та оптоволоконних портів — SFP/Gigabit Ethernet та SFP+/10Gigabit Ethernet. Це забезпечує універсальність у підключенні, даючи можливість використовувати найбільш зручний у тій чи іншій ситуації тип кабелю; а при необхідності, зрозуміло, можна використовувати відразу всі входи Uplink. Однак варто врахувати, що в окремих моделях інтерфейси Ethernet та SFP можуть поєднуватися в одному фізичному роз'ємі. Тож перед покупкою цей нюанс не завадить уточнити окремо.

Існують також комутатори, які використовують поєднання двох типів SFP – SFP/SFP+; однак таких моделей мало і належать вони переважно до професійного рівня.

Базові можливості

DHCP-сервер. Функція, що полегшує управління IP-адресами підключені до комутатора пристроїв. Без власного IP-адреси коректна робота мережного пристрою неможлива; а підтримка DHCP дозволяє присвоювати ці адреси як вручну, так і повністю автоматично. При цьому для автоматичного режиму адміністратор може задати додаткові параметри (діапазон адрес, максимальний час використання однієї адреси). І навіть в повністю ручному режимі робота з адресами здійснюється тільки засобами самого комутатора (тоді як без DHCP довелося б прописувати ці параметри ще й у налаштуваннях кожного пристрою в мережі).

Підтримка стекування. Можливість роботи пристрою в режимі стека. Стек являє собою кілька комутаторів, сприйманих мережею як один «свіч», з одним MAC-адресою, однією IP-адресою і з загальною кількістю роз'ємів, рівним сумарною кількістю портів у всіх задіяних пристроях. Ця функція стане в нагоді, якщо Ви хочете побудувати велику мережу, на яку не вистачає можливостей одного «свіча», але не хочете ускладнювати топологію.

Link Aggregation. Підтримка комутатором технології агрегування каналів. Ця технологія дозволяє об'єднувати декілька паралельних фізичних каналів зв'язку в один логічний, що підвищує швидкість і надійність з'єднання. Простіше кажучи, свіч з такою функцією можна підключити до іншого пристрою (наприклад, маршрутизатор) не одним кабелем, а відразу д...вома або навіть більше. Збільшення швидкості при цьому відбувається за рахунок підсумовування пропускної спроможності всіх фізичних каналів; щоправда, загальна швидкість може бути менше суми швидкостей — з іншого боку, об'єднання декількох порівняно повільних роз'ємів часто обходиться дешевше, ніж використання обладнання з більш прогресивним одиничним інтерфейсом. А підвищення надійності здійснюється, по-перше, за рахунок розподілу загального навантаження по окремим фізичним каналах, по-друге, за рахунок «гарячого» резервування: вихід з ладу одного порту або кабелю може знизити швидкість, однак не призводить до повного розриву з'єднання, а при відновленні працездатності канал включається в роботу автоматично.
Зазначимо, що для Link Aggregation може використовуватися як стандартний протокол LACP, так і нестандартні фірмові технології (останнє характерне, наприклад, для комутаторів Cisco). Крім того, існує досить багато альтернативних найменувань даної технології — port trunking, link bundling тощо; іноді різниця полягає лише в назві, іноді є й технічні нюанси. Всі ці подробиці варто уточнювати окремо.

VLAN. Підтримка комутатором функції VLAN — віртуальних локальних мереж. У цьому разі зміст цієї функції полягає в можливості створювати окремі логічні (віртуальні локальні мережі в межах фізичної «локалки». Таким чином можна, наприклад, розділити відділи у великій організації, створивши для кожної з них свою локальну мережу. Організація VLAN дозволяє знизити навантаження на мережеве обладнання, а також підвищити ступінь захисту даних.

— Захист від петель. Наявність в комутаторі функції захисту від петель. Петлю в даному випадку можна описати як ситуацію, коли один і той самий сигнал запускається в мережі з нескінченного циклу. Це може бути наслідком некоректного підключення кабелів, використання надлишкових сполук (redundant links) і деяких інших причин, але в будь-якому разі подібне явище може «покласти» мережу, а значить, є вкрай небажаним. Захист дозволяє уникнути появи петель — зазвичай шляхом відключення «зациклених» портів.

— Обмеження швидкості доступу. Можливість обмежити швидкість обміну даними для окремих портів комутатора. Таким чином можна знизити навантаження на мережу і запобігти «забивання» каналу окремими терміналами.

Зазначимо, що цим списком справа не обмежується: у сучасних комутаторах можуть зустрічатися і інші можливості.

Стандарти

Статична маршрутизація здійснюється за стандартною схемою, а ось для динамічної використовуються різні протоколи. Ідея динамічної полягає в тому, що таблиця маршрутів постійно редагується програмним способом, в автоматичному режимі. Для цього мережеві пристрої (точніше, програми маршрутизації, що працюють на них) обмінюються між собою службовою інформацією, на підставі якої в таблицю і записуються оптимальні адреси. Одним з фундаментальних понять динамічної маршрутизації є метрика — комплексний показник, що визначає умовну відстань до конкретної адреси (іншими словами — наскільки той чи інший маршрут близький до оптимального). Різні протоколи використовують різні способи визначення метрик і обміну даними про них; ось деякі з найбільш поширених варіантів:

RIP. Один з найпоширеніших протоколів динамічної маршрутизації; був вперше застосований ще у 1969 році в мережі ARPANET, що стала попередницею сучасного Інтернету. Належить до так званих дистанційно-векторних алгоритмів: метрика в протоколі RIP вказується за вектором відстані між маршрутизатором і вузлом мережі, а кожен такий вектор включає інформацію про напрямок передачі даних і кількість «хопів» (ділянок між проміжними вузлами) до відповідного мережевого пристрою. При використанні RIP метрики розсилаються по мережі кожні 30 секунд; при цьому, отримавши від «сусіда» дані про відомі йому вузли, маршрутизатор вносить в ці дані ряд уточнень і доповнень (зокрема, інформац...ію про самого себе і про підключені напряму мережеві пристрої) і передає далі. Після одержання актуальних даних по всій мережі маршрутизатор вибирає для кожного окремого вузла найкоротший маршрут з кількох отриманих альтернативних варіантів і записує його в таблицю маршрутизації.
До переваг протоколу RIP можна віднести простоту реалізації і невимогливість. З іншого боку, він погано підходить для великих мереж: максимальне число хопів в RIP обмежується 15-ю, а ускладнення топології веде до значного зростання службового трафіка і навантаження на обчислювальну частину обладнання — як наслідок, знижується фактична швидкодія мережі. У світлі цього для професійних задач більшого поширення отримали більш прогресивні протоколи, як-от (E)IGRP і OSPF (див. нижче).

— IGRP. Фірмовий протокол маршрутизації, створений компанією Cisco для автономних систем (простіше кажучи — локальних мереж з єдиною політикою маршрутизації з Інтернетом). Так само, як і RIP (див. вище), належить до дистанційно-векторних протоколів, однак використовує набагато більш складну процедуру визначення метрики: при цьому враховується не тільки кількість хопів, але і затримка, пропускна здатність, фактична завантаженість мережі тощо. Крім того, в протоколі реалізований ряд специфічних механізмів для підвищення надійності зв'язку. Завдяки цьому IGRP добре підходить навіть для досить складних мереж з розгалуженою топологією.

— EIGRP. Покращений і модернізований спадкоємець описаного вище протоколу IGRP, розроблений тією ж Cisco. Створений як альтернатива OSPF (див. нижче), поєднує в собі властивості дистанційно-векторних протоколів і стандартів з відстеженням стану каналу. Однією з основних переваг перед оригінальним IGRP стало поліпшення алгоритму розповсюдження даних про зміну топології мережі, завдяки чому ймовірність зациклення (характерна для всіх дистанційно-векторних стандартів) була зведена практично до нуля. А серед відмінностей даного протоколу від OSPF заявлені більш висока швидкодія і більш досконалий алгоритм обчислення метрики при меншій складності налаштування і вимогливості до ресурсів.

— OSPF. Відкритий протокол маршрутизації для автономних систем, створений IETF (радою розробників Інтернету) і вперше реалізований в 1988 році. Належить до протоколів з відстеженням стану каналу, використовує для побудови маршрутів так званий алгоритм Дейкстри (алгоритм знаходження найкоротших шляхів). Процес маршрутизації за OSPF здійснюється наступним чином. Першопочатково маршрутизатор обмінюється даними з аналогічними пристроями, встановлюючи «сусідські відносини»; сусідами називаються маршрутизаторами в межах однієї автономної зони. Потім сусіди обмінюються між собою метриками, синхронізуючи дані, і після такої синхронізації всі маршрутизатори отримують повну базу даних про стан усіх каналів у мережі (LSDB). Вже на підставі цієї бази кожен з цих пристроїв будує свою таблицю маршрутів, використовуючи алгоритм Дейкстри. Головними перевагами OSPF вважаються висока швидкість роботи (швидкість збіжності), високий ступінь оптимізації використання каналів і можливість роботи з мережевими масками змінної довжини (що, зокрема, особливо зручно при обмеженому ресурсі IP-адрес). До недоліків можна віднести вимогливість до обчислювальних ресурсів маршрутизаторів, значне збільшення навантаження при великому числі таких пристроїв в мережі і необхідність ускладнювати топологію у великих мережах, ділячи такі мережі на окремі зони (area). Крім того, в OSPF немає чітких критеріїв визначення метрики: «вартість» кожного хопу може обчислюватися за різними параметрами, залежно від виробника свіча і вибраних адміністратором налаштувань. Це розширює можливості з налаштування маршрутизації і водночас значно ускладнює цю процедуру.

В сучасних комутаторах можуть передбачатися й інші протоколи маршрутизації, крім описаних вище.
Динаміка цін