Maks. moc
Maksymalna moc robocza silnika zaburtowego wyrażona w mocy.
Konie mechaniczne (KM) są tradycyjnie używane głównie w odniesieniu do mocy silników spalinowych, w tym silników benzynowych (patrz Typ silnika). Jednak w silnikach zaburtowych jednostki te są również używane w modelach elektrycznych (patrz ibid.). Wynika to z faktu, że większość silników benzynowych jest na rynku, a producenci łodzi wolą wskazywać maksymalną zalecaną moc silnika w przeliczeniu na „konie”.
Ogólne wzorce przy wyborze silników zaburtowych pod względem mocy są następujące. Z jednej strony
mocniejsza urządzenie pozwoli na większą prędkość i lepiej nadaje się do ciężkiego statku (patrz „Maksymalna waga łodzi”). Z drugiej strony waga, wymiary, koszt i zużycie paliwa / energii również zależą bezpośrednio od mocy. Dlatego nie zawsze ma sens gonić za maksymalną wydajnością.
Ponadto wybór silnika o maksymalnej mocy zależy również od charakterystyki jednostki, na której planuje się jej użycie. Nie należy przekraczać zalecanej mocy zadeklarowanej w charakterystyce - po pierwsze pawęż łodzi może nie być przystosowany do ciężkiej jednostki o dużych gabarytach, a po drugie sama łódź może nie nadawać się do przyspieszania do dużych prędkości. Są też bardziej specyficzne zalecenia. Na przykład optymalna moc silnika z punktu widzenia wydajności i bezpieczeństwa jest uważana za 60 - 80% maksymalnej określonej w charakterystyce łodzi. Niższe wskaźniki
...mogą się przydać, jeśli ważna jest dla Ciebie ekonomia i niski poziom hałasu, a wyższe – jeśli kluczowe są duże prędkości i dynamika przyspieszenia.
Z tym parametrem wiąże się jeszcze jeden konkretny punkt: najczęściej charakterystyka wskazuje moc dostarczaną bezpośrednio do śmigła, jednak niektórzy producenci (głównie krajowi) mogą pokusić się o małą sztuczkę, wskazując moc na głównym wale silnika. Przy przekazywaniu mocy na śmigło nieuchronnie występują straty, więc moc użyteczna silnika w takim przypadku będzie mniejsza od deklarowanej. Tak więc przy wyborze i porównywaniu nie zaszkodzi wyjaśnić, jaka moc jest zawarta w charakterystyce - na śrubie lub na wale.Maks. moc
Maksymalna moc robocza silnika zaburtowego wyrażona w kilowatach.
Praktyczne znaczenie mocy silnika jest szczegółowo opisane w „Max. moc ”jest wyższa. Zauważmy tutaj, że kilowat (pochodzący z wata) jest tylko jedną z jednostek mocy używanych w praktyce wraz z mocą (KM); 1 km ≈ 735 W (0,735 kW). Waty są uważane za tradycyjną jednostkę dla silników elektrycznych (patrz Typ silnika), ale z wielu powodów producenci silników zaburtowych używają tego oznaczenia również w modelach benzynowych.
Objętość robocza
Objętość robocza silnika zaburtowego benzynowego (patrz „Typ silnika”). Termin ten zwykle odnosi się do całkowitego przemieszczenia cylindrów.
Im wyższa jest ta wartość, tym z reguły wyższa jest moc silnika (patrz odpowiedni punkt). Jednocześnie wraz ze wzrostem objętości roboczej wzrasta również zużycie paliwa, masa i wymiary jednostki; a moc zależy nie tylko od tego wskaźnika, ale także od wielu innych czynników - od liczby suwów (patrz "Cykl pracy silnika") lub obecności turbodoładowania (patrz poniżej) i kończąc na określonych cechach konstrukcyjnych. Dlatego nie wyklucza się sytuacji, w których mniejszy silnik będzie miał większą moc i na odwrót.
Średnica tłoka
Średnica pojedynczego tłoka w silniku zaburtowym benzynowym (patrz Typ silnika). W większości przypadków parametr ten jest wyłącznie odniesieniem; sytuacje, w których dane o średnicy tłoka są naprawdę potrzebne, zdarzają się niezwykle rzadko - zwykle podczas naprawy lub konserwacji silnika.
Skok roboczy
Skok roboczy to odległość między dwoma skrajnymi położeniami tłoka w silniku łodzi benzynowej (patrz „Typ silnika”). W większości przypadków parametr ten jest wyłącznie odniesieniem; Sytuacje, w których takie dane są naprawdę potrzebne, zdarzają się niezwykle rzadko – zwykle podczas naprawy lub konserwacji silnika.
Chłodzenie
Rodzaj układu chłodzenia przewidziany dla konstrukcji silnika.
- Powietrze. Chłodzenie przez kontakt powietrza z elementami grzejnymi silnika. Systemy chłodzenia powietrzem są niezwykle proste, nie wymagają budowy skomplikowanych obwodów, wzdłuż których musi krążyć ciecz - wystarczy wentylator (a niektóre modele radzą sobie nawet z promiennikami pasywnymi - charakterystyczne żebrowane wypustki na elementach grzejnych). Kolejną zaletą jest możliwość wydajnej pracy niezależnie od obecności zanieczyszczeń w wodzie, co umożliwia dość efektywne wykorzystanie takich silników na zanieczyszczonych i zarośniętych zbiornikach wodnych. Z drugiej strony sprawność takiego chłodzenia jest niska i nadaje się tylko do jednostek o małej mocy - do 15 KM. Należy również zauważyć, że ta opcja jest zwykle wskazana w przypadku silników elektrycznych (patrz „Typ silnika”): chociaż silnik elektryczny w nich często znajduje się pod wodą i jest chłodzony wodą, a nie powietrzem, kluczowym punktem w tym przypadku jest brak specjalnego chłodzenia obwód w konstrukcji.
-
Woda. Chłodzenie, jak sama nazwa wskazuje, wodą. Należy pamiętać, że nie mówimy o cieczy, ale konkretnie o chłodzeniu wodą: woda niezbędna do działania takich systemów nie krąży w zamkniętym kręgu, ale jest zabierana za burtę i tam odprowadzana po przejściu przez obwód. Jest to główna różnica między systemami chłodzenia łodzi a systemami „lądowymi”. Jeśli porównamy ten rodzaj chłodz
...enia z chłodzeniem powietrzem, to systemy wodne są bardziej skomplikowane i droższe, ale znacznie wydajniejsze i nadają się do silników o niemal każdej mocy. Należy pamiętać, że w niedrogich jednostkach o małej mocy woda jest dostarczana przez „grawitację” ze względu na ciśnienie wytwarzane przez śrubę, a w bardziej zaawansowanych modelach stosuje się specjalną pompę.System wydechowy
Konstrukcja układu wydechowego w benzynowym silniku łodzi (patrz „Typ silnika”), a dokładniej sposób odprowadzania spalin stosowanych w tym układzie.
-
Nad śrubą. Ta kategoria obejmuje dwa typy silników. Najprostszą opcją jest odprowadzanie spalin bezpośrednio do powietrza. Takie systemy są niezwykle proste i tanie, jednak wydech może powodować zauważalne niedogodności dla osób na łodzi (nie tylko ze względu na gazy, ale także z powodu dość wysokiego poziomu hałasu); dlatego można je znaleźć tylko w najprostszych silnikach zaburtowych, a nawet wtedy dość rzadko. Bardziej powszechną opcją jest odprowadzanie spalin do wody nad śmigłem (najczęściej poprzez tzw. płytę antykawitacyjną - płaski występ nad śmigłem). Takie systemy są wygodniejsze niż „powietrzne”, a jednocześnie prostsze i tańsze niż spaliny przez śmigło (patrz niżej), chociaż nadal uważane są za mniej zaawansowane technicznie.
-
Przez śrubę. W układach tego typu spaliny wprowadzane są do wody bezpośrednio przez piastę śmigła; w rzeczywistości położenie rury wydechowej pokrywa się z osią obrotu. Zmniejsza to poziom hałasu w porównaniu z systemami wykorzystującymi wydech nad śmigłem, a także nieznacznie poprawia charakterystykę mocy i trakcji. Wadą tych zalet jest złożoność projektu i odpowiednio wysoki koszt.
Pojemność zbiornika paliwa
Całkowita pojemność zbiornika paliwa przewidziana w konstrukcji lub zestawie dostawy silnika zaburtowego (w zależności od typu zbiornika - patrz "Zbiornik paliwa").
Im większa pojemność zbiornika paliwa, im dłużej silnik może pracować bez tankowania, tym rzadziej trzeba będzie uzupełniać zapas paliwa w zbiorniku. Z drugiej strony, zbiorniki do przewozu luzem mają odpowiednią wielkość i wagę, zwłaszcza gdy są napełnione; to ostatnie jest szczególnie ważne w przypadku silników z wbudowanymi zbiornikami (patrz wyżej).
Bieg
Rodzaje kół zębatych przewidzianych w konstrukcji silnika zaburtowego to w rzeczywistości kierunek, w którym może on poruszać łodzią.
-
Przód. Standardowy bieg do jazdy do przodu. Z definicji dostępny we wszystkich silnikach zaburtowych.
- Jestem
neutralny. W tym przypadku przekładnia neutralna oznacza tryb pracy silnika, w którym jego wał obraca się na biegu jałowym, nie przenosząc obrotu na śmigło lub armatkę wodną. Dzięki temu możesz całkowicie usunąć trakcję bez wyłączania silnika i bez podnoszenia jego „nogi” z wody. Biorąc pod uwagę, że uruchamianie po wyłączeniu może być dość kłopotliwe (zwłaszcza jeśli trzeba to robić często), a wyjęcie obracającego się śmigła z wody jest generalnie niepożądane - obecność biegu neutralnego jest bardzo przydatną cechą, a większość silników benzynowych (patrz „Typ silnika”) mają ten tryb. Ale w modelach elektrycznych (patrz ibid.) Zatrzymywanie i uruchamianie nie stanowi problemu, dlatego rolę „neutralną” w nich odgrywa wyłączenie zasilania i całkowite zatrzymanie silnika (a sam bieg neutralny nie jest wskazany w Charakterystyka).
-
Tył (rewers). Tryb działania, w którym silnik ciągnie cały statek do tyłu; w silnikach śrubowych odbywa się to poprzez obrót śmigła w przeciwnym kierunku, w silnikach strumieniowych - za pomocą klap nawrotnych. Funkcja rewersu znacznie ułatwia zarówno manewrowanie w ciasny
...ch przestrzeniach, jak i hamowanie awaryjne na wodzie, dlatego znajduje się w zdecydowanej większości silników benzynowych i prawie wszystkich elektrycznych.
Należy pamiętać, że silniki elektryczne (patrz „Typ silnika”) mogą mieć kilka biegów tego samego typu - na przykład 5 do przodu i 3 do tyłu. W tych modelach każdy „bieg” to osobna pozycja przełącznika odpowiadająca określonej mocy silnika. W silnikach benzynowych regulacja mocy odbywa się płynnie za pomocą dławika, dzięki czemu mają nie więcej niż jeden bieg każdego rodzaju.