Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie Deepcool Neptwin vs Noctua NH-L12

Dodaj do porównania
Deepcool Neptwin
Noctua NH-L12
Deepcool NeptwinNoctua NH-L12
od 221 zł
Produkt jest niedostępny
Porównaj ceny 1
Opinie
0
0
0
2
TOP sprzedawcy
Podstawowe
Przeznaczeniedo procesorado procesora
Rodzajchłodzenie CPUchłodzenie CPU
Wydmuch powietrzaw bok (rozpraszanie)w dół (na płytę główną)
Dwuwieżowa konstrukcja
TDP150 W125 W
Wentylator
Liczba wentylatorów2 szt.2 szt.
Średnica wentylatora120 mm120 mm
Rodzaj łożyskahydrodynamicznemagnetyczne
Maks. prędkość obrotowa1500 obr./min1600 obr./min
Regulacja obrotówautomatyczna (PWM)automatyczna (PWM)
Maks. przepływ powietrza60 CFM55 CFM
Średni czas bezawaryjnej pracy150 tys. h
Możliwość wymiany
Poziom hałasu32 dB22 dB
Typ podłączenia4-pin4-pin
Radiator
Liczba rurek cieplnych6 szt.4 szt.
Kontakt rurek cieplnychpośredni
Materiał radiatoraaluminium / miedźaluminium / miedź
Materiał podstawymiedź niklowana
Socket
AMD AM2/AM3/FM1/FM2
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
 
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Dane ogólne
Rodzaj mocowaniadwustronne (backplate)dwustronne (backplate)
Wymiary126X136X159 mm150x93x128 mm
Wysokość159 mm128 mm
Waga1109 g680 g
Data dodania do E-Katalogmarzec 2013czerwiec 2012

Wydmuch powietrza

Kierunek, w którym strumień powietrza wychodzi z chłodnicy aktywnej (patrz „Rodzaj”).

Parametr ten dotyczy przede wszystkim modeli używanych z procesorami, warianty mogą być następujące:

— W bok (rozpraszanie). Ten format pracy jest typowy dla chłodnic o tzw. konstrukcji wieżowej. W takich modelach wentylator jest instalowany prostopadle do podłoża stykającego się z procesorem, dzięki czemu strumień powietrza porusza się równolegle do płyty głównej. Zapewnia to maksymalną wydajność: ogrzane powietrze nie wraca do procesora i innych elementów systemu, lecz jest rozpraszane w obudowie (i prawie natychmiast wychodzi na zewnątrz, jeśli komputer ma przynajmniej jeden wentylator obudowy). Główną wadą tego wariantu jest wysoka wysokość konstrukcji, która może skomplikować jej umieszczenie w niektórych obudowach. Jednak w większości przypadków ten punkt nie jest kluczowy – zwłaszcza jeśli chodzi o potężny układ chłodzenia przeznaczony do zaawansowanego systemu z wydajnym „gorącym” procesorem. Tak więc to właśnie rozpraszanie poprzeczne jest obecnie najpopularniejszym wariantem - zwłaszcza w chłodnicach o maksymalnym TDP 150 W i wyższym (choć mniej wydajne modele często używają tego układu).

— W dół (na płytę główną). Ten format pracy pozwala na „ułożenie” wentylatora wraz z radiatorem prosto na płycie głównej, znacznie zmniejszając wysokość całej chłodnicy (w porównaniu do modeli wykorzystujących nadmuch boczny). Z drugiej strony ten format pracy nie...jest zbyt wydajny – wszak zanim rozproszy się po obudowie, gorące powietrze znów obdmuchuje płytę z procesorem. Tak więc w dzisiejszych czasach ten wariant jest stosunkowo rzadki i występuje głównie w chłodnicach o małej mocy i dopuszczalnym TDP do 150 W. A na takie modele należy zwracać uwagę głównie wtedy, gdy w obudowie jest mało miejsca, a niska wysokość chłodnicy jest ważniejsza niż wysoka wydajność.

Dwuwieżowa konstrukcja

Funkcja występująca w niektórych aktywnych chłodnicach procesorowych (patrz „Przeznaczenie”).

Aby zapoznać się z ogólnym układem wieży, patrz "Wydmuch strumienia powietrza" poniżej. Konstrukcja dwuwieżowa oznacza, że ​​chłodnica ma dwie jednostki robocze – czyli dwa wentylatory i dwa radiatory. W związku z tym, w konstrukcji jest więcej rurek cieplnych niż w modelach z jedną wieżą - co najmniej jest ich 4, a częściej 5 - 6 lub nawet więcej. Taki układ może znacznie zwiększyć wydajność chłodzenia; z drugiej strony zauważalnie wpływa on również na wymiary, wagę i cenę.

TDP

Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).

TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).

Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP do 100 W, najbardziej zaawansowane — do 250 W i nawet więcej.

Rodzaj łożyska

Rodzaj łożyska zastosowanego w wentylatorach (wentylatorze) układu chłodzenia.

Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:

- Ślizgowe. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie części są proste, niezawodne i trwałe, lecz ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania (patrz niżej) zapewniają znacznie mniejsze tarcie.

- Toczne. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności jest nieco gorsza zarówno od łożysk ślizgowych, jak i bardziej zaawansowanych urządzeń hydrodynamicznych (patrz poniżej). Choć łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wyżej wymienione odmiany.

- Hydrodynamiczny .... Łożyska tego typu wypełnione są specjalnym płynem; obracając się tworzy on warstwę, po której ślizga się ruchoma część łożyska. W ten sposób można uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znacznie zmniejszyć tarcie w porównaniu z poprzednimi odmianami. Ponadto łożyska te są ciche i bardzo niezawodne. Wśród ich wad można zaznaczyć stosunkowo wysoki koszt, jednak w praktyce punkt ten często okazuje się niewidoczny na tle kosztu całego układu. Dlatego ten wariant jest w naszych czasach niezwykle popularny, występuje on w układach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.

- Centrowanie magnetyczne . Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane są za najbardziej zaawansowany rodzaj łożysk, są niezawodne i ciche, lecz są drogie.

Maks. prędkość obrotowa

Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość nie przekracza 1000 obr./min, w „najszybszych” może to być do 2500 obr./min, a nawet więcej.

Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.

Maks. przepływ powietrza

Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.

Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet więcej.

Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.

Średni czas bezawaryjnej pracy

Całkowity czas, przez który wentylator chłodzący nie ulegnie awarii. Należy pamiętać, że po wyczerpaniu tego czasu urządzenie niekoniecznie ulegnie zepsuciu – wiele współczesnych wentylatorów ma znaczny zapas wytrzymałości i jest w stanie pracować jeszcze przez jakiś czas. Przy tym, warto oceniać ogólną trwałość układu chłodzenia właśnie według tego parametru.

Poziom hałasu

Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.

Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:

20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.

Liczba rurek cieplnych

Liczba rurek cieplnych w układzie chłodzenia

Rura cieplna to szczelna konstrukcja zawierająca ciecz o niskiej temperaturze wrzenia. Gdy jeden koniec rury jest podgrzewany, ciecz ta odparowuje i skrapla się na drugim końcu, pobierając ciepło ze źródła ogrzewania i przekazując je do chłodnicy. Obecnie takie urządzenia są szeroko stosowane głównie w układach chłodzenia procesorów (patrz „Przeznaczenie”) - łączą one podłoże, które ma bezpośredni kontakt z procesorem, i radiator aktywnej chłodnicy. Producenci dobierają liczbę rurek w oparciu o ogólną wydajność chłodnicy (patrz „Maksymalny TDP”); jednak modele o podobnych wartościach TDP mogą nadal znacząco różnić się tym parametrem. W takich przypadkach warto uwzględniać następujące punkty: wzrost liczby rurek cieplnych zwiększa efektywność wymiany ciepła, lecz także zwiększa gabaryty, wagę i koszt całej konstrukcji.

Jeśli chodzi o liczby, w najprostszych modelach przewidziano 1 - 2 rurki cieplne, a w najbardziej zaawansowanych i wydajnych układach procesorowych liczba ta może wynosić 7 lub więcej.
Dynamika cen
Deepcool Neptwin często porównują
Noctua NH-L12 często porównują