TDP
Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).
TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).
Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP
do 100 W, najbardziej zaawansowane —
do 250 W i nawet
więcej.
Liczba wentylatorów
Liczba wentylatorów w konstrukcji układu chłodzenia. Większa liczba wentylatorów zapewnia wyższą wydajność (pod warunkiem, że pozostałe parametry są identyczne); z drugiej strony odpowiednio zwiększają się wymiary i hałas podczas pracy. Ponadto zauważamy, że jeżeli inne cechy są podobne, mniejsza liczba dużych wentylatorów jest uważana za bardziej zaawansowany wariant niż większa liczba małych; zobacz "Średnica wentylatora", aby uzyskać szczegółowe informacje.
Min. prędkość obrotowa
Najniższa prędkość, przy której może działać wentylator chłodzący. Jest wskazywana tylko dla modeli z regulatorem prędkości (patrz poniżej).
Im niższa prędkość minimalna (przy tym samym maksimum) - tym szerszy jest zakres regulacji prędkości i tym bardziej możesz spowolnić wentylator, gdy duża wydajność nie jest potrzebna (takie spowolnienie pozwala zmniejszyć zużycie energii i poziom hałasu). Z drugiej strony szeroki zakres ma odpowiedni wpływ na koszt.
Ciśnienie statyczne
Maksymalne statyczne ciśnienie powietrza generowane przez wentylator podczas pracy.
Parametr ten mierzony jest w następujący sposób: jeżeli wentylator jest zainstalowany na rurze zaślepionej, z której nie ma wylotu powietrza, i ustawiony do nadmuchu, to ciśnienie osiągane w rurze będzie odpowiadało ciśnieniu statycznemu. W praktyce parametr ten określa całkowitą sprawność wentylatora: im wyższe ciśnienie statyczne (pozostałe parametry są takie same), tym łatwiej wentylatorowi „przepychać” wymaganą ilość powietrza przez przestrzeń o dużym oporze, np. przez wąskie szczeliny radiatora lub przez obudowę wypełnioną podzespołami.
Parametr ten również jest używany w niektórych specyficznych obliczeniach, jednak obliczenia te są dość skomplikowane i zwykły użytkownik z reguły nie jest potrzebny - są one związane z kwestiami, które są istotne głównie dla entuzjastów komputerowych. Więcej na ten temat można przeczytać w specjalnych źródłach.
Min. poziom hałasu
Najniższy poziom hałasu wytwarzany przez układ chłodzenia podczas pracy.
Parametr ten jest wskazywany tylko dla tych modeli, które mają regulację wydajności i mogą pracować ze zmniejszoną mocą. W związku z tym minimalny poziom hałasu to poziom hałasu w trybie „najcichszym”, deklarowana głośność pracy, która w danym modelu nie może być mniejsza.
Dane te przydadzą się przede wszystkim tym, którzy starają się maksymalnie zmniejszyć poziom hałasu i, co jest nazywane, „walką o każdy decybel”. Należy tu jednak zaznaczyć, że w wielu modelach wartości minimalne wynoszą około 15 dB, a w tych najcichszych – tylko 10 – 11 dB. Ta głośność jest porównywalna do szelestu liści i prawie jest niesłyszalna na tle hałasu otoczenia nawet w pomieszczeniu mieszkalnym w nocy, nie mówiąc już o głośniejszych warunkach, a różnica między 11 a 18 dB w tym przypadku nie jest w żaden sposób znacząca dla ludzkiej percepcji. Tabela porównawcza dla dźwięku zaczynającego się od 20 dB jest podana w sekcji "Poziom hałasu" poniżej.
Materiał radiatora
—
Miedź. Miedź ma wysoką przewodność cieplną i zapewnia skuteczne odprowadzanie ciepła, lecz takie radiatory są dość drogie.
—
Aluminium. Aluminium jest tańsze niż miedź, lecz jego przewodność cieplna, a tym samym wydajność, jest nieco niższa.
—
Aluminium/miedź. Kombinowana konstrukcja — z reguły radiator wykonany jest z aluminium, a ciepłowody z miedzi. Takie połączenie zapewnia dobrą wydajność bez znacznego zwiększenia kosztu. Ten typ radiatora dotyczy wyłącznie chłodzeń CPU.
Rozmiar radiatora
Nominalny rozmiar radiatora przewidzianego w konstrukcji chłodzenia wodnego.
Radiator zapewnia chłodzenie podgrzanego wymiennika ciepła pochodzącego z chłodzonych elementów układu. Najczęściej działa on na zasadzie chłodnicy – czyli składa się z samego radiatora i jednego lub kilku wentylatorów. Wielkość radiatora jest oznaczona jedną liczbą - największym wymiarem, długością. A szerokość (od której zależy powierzchnia robocza i odpowiednio wydajność) można określić na podstawie długości. Faktem jest, że w radiatorach standardowo stosowane są wentylatory o dwóch średnicach - 120 i 140 mm; jeśli jest kilka takich wentylatorów, są one instalowane w rzędzie. Oznacza to, że długość konstrukcji będzie wielokrotnością średnicy wentylatora - 120 lub 140 mm, a szerokość będzie odpowiadać tej średnicy. Na przykład produkt o wymiarach
120 mm lub
140 mm będzie miał taką samą szerokość i jeden wentylator, podczas gdy rozmiar
240 mm oznacza dwa wentylatory 120 mm.
Opisane cechy prowadzą do tego, że większy rozmiar niekoniecznie musi oznaczać bardziej zaawansowaną konstrukcję. W ten sposób radiator
360 mm lub nawet
420 mm z trzema małymi wentylatorami może mieć taką samą lub nawet niższą wydajność niż model
280 mm. Ponadto, większe wentylatory o tej samej wydajności dz
...iałają wolniej, co oznacza, że są cichsze.
Dodatkowo, przy poszukiwaniu miejsca w obudowie należy wziąć pod uwagę wielkość radiatora. Należy również pamiętać o szerokości: radiatory oparte na wentylatorach 140mm zwykle nie są kompatybilne z gniazdami pod radiatory z wentylatorami 120mm. Czyli model o rozmiarze 140 mm nie zmieści się do gniazda 240 mm (2x120 mm), a 280 mm (2x140 mm) nie zmieści się w miejsce 360 mm (3x120 mm), choć formalnie rozmiar wydaje się wystarczający w obu przypadkach.Długość rurki
Długość rur łączących blok wodny z chłodnicą w układzie chłodzenia wodą. Z definicji są to co najmniej 2 rury (dostawcza i „powrotna”), a czasem nawet więcej, lecz wszystkie mają tę samą długość. Ta długość odpowiada największej odległości od bloku wodnego do radiatora możliwej dla tego systemu w standardowej konfiguracji; ten szczegół należy wziąć pod uwagę przy wyborze chłodzenia wodą dla określonego miejsca instalacji. Ogólnie większość modeli ma
38 lub
40 cm a >, co wystarcza na podstawowe potrzeby.Wymiary
Wymiary układu chłodzenia. W przypadku układów wodnych (patrz „Rodzaj”) w tym punkcie podawany jest rozmiar zewnętrznego radiatora (wymiary bloku wodnego w takich urządzeniach są niewielkie i nie ma potrzeby ich szczególnego podawania).
Ogólnie jest to dość oczywisty parametr. Zauważamy tylko, że grubość ma szczególne znaczenie dla wentylatorów obudowy (patrz tamże) - to od niej zależy, ile miejsca urządzenie zajmie wewnątrz obudowy. Przy tym
wentylatory z cienką obudową zwyczajowo zaliczane są do modeli, w których rozmiar ten nie przekracza 20 mm.