Польща
Каталог   /   Комп'ютерна техніка   /   Комплектуючі   /   Системи охолодження

Порівняння Thermaltake Riing Silent 12 vs be quiet! Pure Wings 2 PWM 120

Додати до порівняння
Thermaltake Riing Silent 12
be quiet! Pure Wings 2 PWM 120
Thermaltake Riing Silent 12be quiet! Pure Wings 2 PWM 120
від 160 zł
Очікується у продажу
від 69 zł
Очікується у продажу
ТОП продавці
Головне
Призначеннядля процесорау корпус
Типактивний кулервентилятор
Видування повітряного потокувбік (розсіювання)
Максимальний TDP150 Вт
Вентилятор
Кількість вентиляторів1 шт1 шт
Діаметр вентилятора120 мм120 мм
Товщина вентилятора25 мм
Тип підшипникагідродинамічнийковзання (Rifle Bearing)
Максимальні оберти1400 об/хв1500 об/хв
Регулятор обертівавто (PWM)авто (PWM)
Макс. повітряний потік53 CFM51.4 CFM
Напрацювання на відмову40 тис. год80 тис. год
Можливість заміни
Рівень шуму18 дБ20 дБ
Джерело живлення4-pin4-pin
Радіатор
Теплових трубок4 шт
Контакт теплотрубокпрямий
Матеріал радіатораалюміній/мідь
Матеріал підкладкиалюміній
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
 
 
 
 
 
 
 
 
 
 
Інше
Підсвічування
Колір підсвічуваннясиній або червоний
Тип кріпленнядвосторонній (backplate)болти
Габарити159x140x74 мм120x120x25 мм
Висота159 мм
Вага825 г140 г
Дата додавання на E-Katalogжовтень 2016квітень 2016

Призначення

Компонент комп'ютерної системи, для якого призначена система охолодження.

У наш час найбільшого поширення набули два різновиди СО — для процесора і для корпусу. Випускаються і інші рішення – для відеокарт, оперативної пам'яті, жорстких дисків M.2 SSD тощо; однак в більшості ситуацій подібні компоненти комп'ютера або дуже рідко потребують спеціальних систем охолодження (характерний приклад — жорсткі диски), або оснащуються ними від початку (відеокарти).

СО для процесорів найчастіше мають формат активного кулера або системи рідинного охолодження (див. «Тип»). При цьому і в тому, і в іншому разі в конструкції зазвичай передбачається підкладка — контактна пластина, яка прилягає безпосередньо до процесора. Тепло від підкладки передається до блоку охолодження за допомогою теплових трубок (в кулерах) або контуру з циркулюючим теплоносієм (в рідинних системах). Для процесорів випускаються також радіатори – вони розраховані переважно на малопотужні CPU з низьким тепловиділенням; при встановленні такого компонента потрібно приділяти особливу увагу якості охолодження корпусу.

Зі свого боку, СО для корпусів робляться виключно у вигляді вентиляторів, оскільки їх задача — не охолоджувати строго певний компонент, а видаляти гаряче повітря з усього об'єму системного блоку.

Тип

- Вентилятор. Класичний вентилятор - моторчик з лопатями, що забезпечує потік повітря; також сюди входять комплекти з кількох вентиляторів. У жодному разі не варто плутати такі пристрої з кулерами (див. нижче) — вентилятори не мають радіаторів. Практично всі рішення цього типу призначені для корпусів (див. «Призначення»), лише поодинокі моделі розраховані на «обдування» жорстких дисків або чіпсетів.

- Реверсивний вентилятор. Різновид вентиляторів (див. вище), у яких крильчатка вивернута у зворотний бік. Зроблено це для того, що при розміщенні позаду корпусу «системника» або в його верхній частині можна було надати складання естетичного вигляду — реверсивний вентилятор буде встановлений лицьовою стороною для вдува повітря. Застосовуються такі рішення переважно для бічних стін корпусів типу «акваріум».

- Радіатор. Конструкція з теплопровідного матеріалу, що має спеціальну ребристу форму. Така форма забезпечує велику площу зіткнення з повітрям, як наслідок – хорошу тепловіддачу. Радіатори не споживають енергії та працюють абсолютно безшумно, проте не відрізняються ефективністю. Тому в чистому вигляді вони зустрічаються вкрай рідко, а призначаються такі моделі або для малопотужних компонентів ПК з низьким тепловиділенням (енергоефективні процесори, жорсткі диски тощо), або для складання активного кулера (див. нижче) з куплених окремо вентилятора і р...адіатора (Цей варіант зустрічається серед рішень під відеокарти).

- Активний кулер. Пристрій у вигляді радіатора із встановленим на ньому вентилятором; при цьому в багатьох моделях радіатор не контактує з компонентом, що охолоджується безпосередньо, а з'єднується з ним за допомогою теплових трубок, при цьому видування повітря здійснюється вбік (наприклад зване баштове компонування, особливо популярне в системах для CPU; докладніше див. «Видув повітряного потоку») . У будь-якому випадку подібні конструкції, з одного боку, порівняно прості та недорогі, з іншого — досить ефективні, завдяки чому є надзвичайно популярним типом СО. Зокрема, саме в даному форматі випускається більшість рішень для процесорів (в т.ч. баштові та боксові), а в цілому кулери можуть застосовуватися практично для будь-якого компонента системи, за винятком корпусу.

- Водяне обдув. Системи водяного обдув складаються з трьох основних частин: ватерблока, що безпосередньо контактує з компонентом, що охолоджується (зазвичай процесором), зовнішнього охолоджувача, а також помпи (окремою або вбудованою в охолоджувач). Ці компоненти з'єднуються шлангами, якими циркулює вода (чи інший аналогічний теплоносій) — вона й забезпечує перенесення тепла. А блок, що охолоджує, зазвичай являє собою кулер - систему з вентиляторів і радіаторів, яка розсіює теплову енергію в навколишньому повітрі. Водяні системи помітно ефективніші за активні кулери (див. вище), вони підходять навіть для дуже потужних і «гарячих» CPU, з яким традиційні кулери справляються з працею. З іншого боку, цей тип обдув досить громіздкий і складний у монтажі, та й обходиться дорого.

- Комплект СЖО. Комплект для самостійного збирання системи рідинного (водяного) обдув. В даному випадку мається на увазі, що вся система поставляється у вигляді набору деталей, з якого юзер повинен сам зібрати готову СЖО. Її установка виходить складнішою, ніж традиційних водяних систем. Тому комплектів СЖО випускається небагато, а розраховані вони переважно на ентузіастів, які люблять експериментувати з оформленням та конструкцією своїх ПК.

- Backplate. Цілісна металева пластина, яка використовується як кріпильний елемент системи обдув. Служить для запобігання перегину материнської плати або відеокарти при розгортанні системи відведення тепла, а також забезпечує пасивне обдув задній сторони модулів, з якими сусідить.

- Водоблок VRM. Водоблок забезпечує ефективне обдув елементів підсистеми живлення центрального процесора VRM (Voltage Regulator Module).

- Водоблок CPU. Теплообмінник із міді або нікелю, призначений для відведення тепла від CPU через охолоджувальну рідину. Використовується у системах водяного обдув комп'ютерів. Найчастіше процесорні водоблоки забезпечуються кріпленням під певні процесорні платформи.

- Водоблок GPU. Блоки рідинного обдув для максимально ефективного відведення тепла від відеокарти. Випускаються подібні рішення під конкретну групу відеокарт одному графічному процесорі. Складаються водоблоки GPU з двох основних частин: верхньої, де розташовані теплознімач із мідного сплаву, пластикова накладка з рідинними каналами та кожух для надання конструкції жорсткості, а також металевої пластини в нижній частині блоку на зворотний бік друкованої плати.

- Набір кріплень. Набір кріплень для монтажу систем обдув на елементах материнської плати комп'ютера. Випускаються під певні версії сокету.

Видування повітряного потоку

Напрямок, в якому з активного кулера (див. «Тип») виходить потік повітря.

Даний параметр актуальний перш за все для моделей, що використовуються з процесорами, варіанти ж можуть бути такими:

— Убік (розсіювання). Формат роботи, характерний для кулерів так званої вежевої конструкції. У таких моделях вентилятор встановлений перпендикулярно підкладці, що контактує з процесором, завдяки чому повітряний потік рухається паралельно материнській платі. Це забезпечує максимальну ефективність: нагріте повітря не повертається до процесора та інших компонентів системи, а розсіюється в корпусі (і практично відразу виходить назовні, якщо в комп'ютері є хоча б один корпусний вентилятор). Головний недолік даного варіанта – велика висота конструкції, яка може ускладнити її розміщення в деяких системниках. Однак у більшості ситуацій цей момент не є принциповим – особливо якщо мова йде про потужну систему охолодження, розраховану на прогресивну систему з продуктивним «гарячим» процесором. Так що саме бокове розсіювання в наш час є найбільш популярним варіантом — особливо в кулерах з максимальним TDP 150 Вт і вище (хоча і скромніші моделі нерідко використовують дане компонування).

— Вниз (на материнку). Подібний формат роботи дає змогу «укласти» вентилятор з радіатором плазом на материнську плату, помітно зменшивши висоту всього кулера (в порівнянні з моделями, що використовують бокове видування). З іншого боку, даний формат роботи не характеризується ефектив...ністю – адже перш ніж розсіятися по корпусу, гаряче повітря знову обдуває плату з процесором. Так що в наш час даний варіант зустрічається порівняно рідко, причому переважно в малопотужних кулерах з допустимим TDP до 150 Вт. А звертати увагу на подібні моделі варто переважно тоді, коли простору в корпусі небагато і невелика висота кулера важливіша, ніж висока ефективність.

Максимальний TDP

Максимальний TDP, який забезпечується системою охолодження. Відзначимо, що даний параметр вказується тільки для рішень, оснащених радіаторами (див. «Тип»); для окремо виконаних вентиляторів ефективність визначається іншими параметрами, насамперед значеннями повітряного потоку (див. вище).

TDP можна описати як кількість тепла, яке система охолодження здатна відвести від обслуговуваного компонента. Відповідно, для нормальної роботи всієї системи потрібно, щоб TDP системи охолодження був не нижче тепловиділення цього компонента (дані по тепловиділенню зазвичай зазначаються докладні характеристики комплектуючих). А краще всього підбирати охолоджувачі з запасом по потужності хоча б у 20 – 25 % — це дасть додаткову гарантію на випадок форсованих режимів роботи і нештатних ситуацій (у тому числі засмічення корпусу і зниження ефективності повітрообміну).

Що стосується конкретних чисел, то найбільш скромні сучасні системи охолодження забезпечують TDP до 100 Вт, найбільш прогресивні — до 250 Вт і навіть вище.

Товщина вентилятора

Цей параметр слід розглядати в контексті того, чи впишеться вентилятор у корпус комп'ютера. Стандартні корпусні вентилятори випускаються у розмірі близько 25 мм завтовшки. Низькопрофільні кулери товщиною близько 15 мм призначені для малогабаритних корпусів, де дуже важлива економія простору. Вентилятори великої товщини (30-40 мм) можуть похвалитися високою ефективністю охолодження завдяки збільшеним розмірам крильчатки. Однак вони шумніші за стандартні моделі на тих же оборотах і не завжди нормально вписуються в корпус, часом зачіпаючи інші комплектуючі.

Тип підшипника

Тип підшипника, що використовується у вентиляторі (вентиляторах) системи охолодження.

Підшипник – це деталь між віссю вентилятора, що обертається, і нерухомою основою, яка підтримує вісь і знижує тертя. У сучасних вентиляторах зустрічаються такі типи підшипників:

Ковзання. Дія таких підшипників заснована на прямому контакті між двома суцільними поверхнями, ретельно відполірованими для зниження тертя. Подібні пристосування прості, надійні і довговічні, проте ефективність їх досить невисока — кочення, а тим більше гідродинамічний і магнітний принцип роботи (див. нижче) забезпечують значно менше тертя.

Кочення. Також називаються «кульковими підшипниками» оскільки «посередниками» між віссю обертання і нерухомою основою є кульки (рідше — циліндричні ролики), закріплені в спеціальному кільці. При обертанні осі такі кульки котяться між нею і основою, за рахунок чого сила тертя виходить дуже невисокою — помітно нижче, ніж в підшипниках ковзання. З іншого боку, конструкція виходить дорожчою і складнішою, а за надійністю вона дещо поступається як тим же підшипникам ковзання, так і більш прогресивним гідродинамічним пристосуванням (див. нижче). Тому, хоча підшипники кочення в наш час досить широко поширені, проте в цілому вони зустрічаються помітно рідше згаданих різновидів.

Гідродинамічний. Підшипники цього типу заповнені спец...іальною рідиною; при обертанні вона створює прошарок, по якому ковзає рухома частина підшипника. Таким чином вдається уникнути безпосереднього контакту між твердими поверхнями і значно знизити тертя в порівнянні з попередніми типами. Також такі підшипники тихо працюють і вельми надійні. З їх недоліків можна відзначити порівняно високу вартість, проте на практиці цей момент нерідко виявляється непомітним на тлі ціни всієї системи. Тому даний варіант в наш час надзвичайно популярний, його можна зустріти в системах охолодження всіх рівнів — від бюджетних до прогресивних.

Магнітне центрування. Підшипники, засновані на принципі магнітної левітації: вісь, що обертається, «підвішена» в магнітному полі. Таким чином вдається (як і в гідродинамічних) уникнути контакту між твердими поверхнями і ще більше знизити тертя. Вважаються найбільш прогресивним типом підшипників, надійні і безшумні, проте коштують дорого.

Максимальні оберти

Найбільші оберти, на яких здатен працювати вентилятор системи охолодження; для моделей без регулятора обертів (див. нижче) у цьому пункті зазначається штатна швидкість обертання. У найбільш «повільних» сучасних вентиляторах максимальна швидкість не перевищує 1000 об/хв, в самих «швидких» може становити до 2500 об/хв і навіть більше .

Відзначимо, що даний параметр щільно пов'язаний з діаметром вентилятора (див. вище): чим менше діаметр, тим вище повинні бути оберти для досягнення потрібних значень повітряного потоку. При цьому швидкість обертання безпосередньо впливає на рівень шуму і вібрацій. Тому вважається, що потрібний об'єм повітря найкраще забезпечувати великими і порівняно «повільними» вентиляторами; а «швидкі» невеликі моделі має сенс застосовувати там, де компактність має вирішальне значення. Якщо ж порівнювати по швидкості моделі однакового розміру, то більш високі оберти позитивно позначаються на продуктивності, проте підвищують не тільки рівень шуму, а також ціну та енергоспоживання.

Макс. повітряний потік

Максимальний повітряний потік, що може створити вентилятор системи охолодження; вимірюється в CFM - кубічних футах за хвилину.

Чим вище кількість CFM - тим ефективніший вентилятор. З іншого боку, висока продуктивність вимагає або великого діаметра (що позначається на габаритах та вартості), або високої швидкості (а вона підвищує рівень шуму та вібрацій). Тому при виборі має сенс не гнатися за максимальним повітряним потоком, а скористатися спеціальними формулами, що дозволяють розрахувати необхідне кількість CFM залежно від типу та потужності компонента, що охолоджується, та інших параметрів. Такі формули можна знайти у спеціальних джерелах. Що ж до конкретних чисел, то найбільш скромних системах продуктивність вбирається у 30 CFM, а найбільш потужних може становити понад 80 CFM.

Також варто враховувати, що фактичне значення повітряного потоку на найбільших оборотах зазвичай нижче за заявлений максимальний; докладніше див. «Статичний тиск».

Напрацювання на відмову

Загальний час, який вентилятор системи охолодження здатний гарантовано пропрацювати до виходу з ладу. Зазначимо, що при вичерпанні цього часу пристрій не обов'язково зламається — зазвичай сучасні вентилятори мають значний запас міцності і здатні пропрацювати ще якийсь період. Водночас оцінювати загальну довговічність системи охолодження варто саме за цим параметром.
Динаміка цін
Thermaltake Riing Silent 12 часто порівнюють
be quiet! Pure Wings 2 PWM 120 часто порівнюють