Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie Deepcool ICEEDGE MINI vs Zalman CNPS5X Performa

Dodaj do porównania
Deepcool ICEEDGE MINI
Zalman CNPS5X Performa
Deepcool ICEEDGE MINIZalman CNPS5X Performa
od 54 zł
Produkt jest niedostępny
Porównaj ceny 1
Opinie
TOP sprzedawcy
Podstawowe
Przeznaczeniedo procesorado procesora
Rodzajchłodzenie CPUchłodzenie CPU
Wydmuch powietrzaw bok (rozpraszanie)w bok (rozpraszanie)
TDP95 W
Wentylator
Liczba wentylatorów1 szt.1 szt.
Średnica wentylatora80 mm92 mm
Rodzaj łożyskahydrodynamicznehydrodynamiczne
Maks. prędkość obrotowa2200 obr./min2800 obr./min
Regulacja obrotówbrakautomatyczna (PWM)
Maks. przepływ powietrza23 CFM
Możliwość wymiany
Poziom hałasu23 dB32 dB
Typ podłączenia3-pin4-pin
Radiator
Liczba rurek cieplnych2 szt.3 szt.
Kontakt rurek cieplnychbezpośrednipośredni
Materiał radiatoraaluminium / miedźaluminium
Materiał podstawyaluminiummiedź
Socket
AMD AM2/AM3/FM1/FM2
 
Intel 775
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
Dane ogólne
Rodzaj mocowaniazatrzaskidwustronne (backplate)
Wymiary127x63x129.5 mm134x127x64 mm
Wysokość130 mm134 mm
Waga268 g320 g
Data dodania do E-Katalogczerwiec 2012maj 2012

TDP

Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).

TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).

Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP do 100 W, najbardziej zaawansowane — do 250 W i nawet więcej.

Średnica wentylatora

Średnica wentylatora(ów) stosowanego w układzie chłodzenia.

Ogólnie rzecz biorąc, większe wentylatory są uważane za bardziej zaawansowane niż małe: wytwarzają one silny przepływ powietrza przy stosunkowo niskich prędkościach i niskim poziomie hałasu. Z drugiej strony duża średnica to duże gabaryty, waga i cena. Jeżeli chodzi o konkretne wartości, to modele mające40 i mm, 60 mm, są uważane miniaturowymi, 80 mm i 92 mm, - średnimi 120 mm i 135 / 140 mm, - dużymi, a w najbardziej wydajnych układachdo obudówwystępują wentylatory nawet200 mm.

Maks. prędkość obrotowa

Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość nie przekracza 1000 obr./min, w „najszybszych” może to być do 2500 obr./min, a nawet więcej.

Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.

Regulacja obrotów

- Automatyczna (PWM). Rodzaj automatycznego regulatora stosowanego w układach chłodzenia procesorów. Zasada takiej regulacji polega na tym, że automatyka monitoruje bieżące obciążenie procesora i dostosowuje do niego tryb pracy wentylatora. Tym samym układ chłodzenia działa „na wyprzedzenie”, czyli faktycznie zapobiega podwyższeniu temperatury. Wadami takiej automatyzacji są wysoki koszt i dodatkowe wymagania dotyczące kompatybilności: funkcja PWM musi być obsługiwana przez płytę główną, a zasilanie wentylatora musi być dostarczane przez złącze 4-pinowe (patrz „Zasilanie”).

- Ręczna. Ręczna regulacja pozwalająca na ustawienie prędkości obrotowej na życzenie użytkownika. Jej główne zalety to możliwość dowolnej regulacji i niezawodność: automatyka nie zawsze reaguje optymalnie, w wydajnych układach czasami lepiej jest, aby użytkownik wziął kontrolę w swoje ręce. Z drugiej strony sterowanie ręczne jest droższe, a także trudniejsze w obsłudze – wymaga od użytkownika zwracania większej uwagi na stan układu, natomiast przy nieuwadze znacznie wzrasta prawdopodobieństwo przegrzania.

- Ręczna/automatyczna. Połączenie dwóch powyższych rodzajów: podstawowe sterowanie realizowane jest przez PWM, a ręczna służy do ograniczania maksymalnej prędkości obrotowej. Jest to dość zaawansowany rodzaj rodzaj sterowania, który rozszerza możliwości automatycznej regulacji, a jednocześnie nie wymaga stałej kontroli temperatury, jak w przypadku c...zysto ręcznej regulacji. Co prawda, takie rozwiązanie nie jest tanie.

- Adapter (rezystancyjny). W danym przypadku sterowanie prędkością odbywa się poprzez zmniejszenie napięcia dostarczanego do wentylatora. Aby to zrobić, wentylator jest podłączany do zasilacza za pomocą adaptera rezystancyjnego. Jest to rodzaj alternatywy dla ręcznej regulacji: adaptery są niedrogie. Z drugiej strony są znacznie mniej wygodne: jedynym sposobem na zmianę prędkości obrotowej przy takiej regulacji jest faktyczna zmiana adaptera, a do tego trzeba wyłączać system i włazić do obudowy.

- Termostat. Automatyczna kontrola prędkości na podstawie danych z czujnika mierzącego temperaturę chłodzonego elementu: gdy temperatura wzrasta, intensywność pracy również wzrasta i odwrotnie. Takie układy są prostsze od opisanych powyżej PWM, ponadto można je zastosować do niemal każdego elementu systemu, nie tylko do procesora. Z drugiej strony, mają one większą bezwładność i czas reakcji: jeśli PWM zapobiega nagrzewaniu z góry, to termostat jest uruchamiany w momencie podwyższenia temperatury.

Maks. przepływ powietrza

Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.

Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet więcej.

Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.

Możliwość wymiany

Możliwość wymiany standardowego wentylatora przez samego użytkownika - bez ingerencji serwisu lub specjalistów. Maksimum które może być wymagane do takiej procedury, to posiadanie najprostszych narzędzi, np. śrubokrętu; czasami są one dostarczane z układem chłodzenia.

Wentylator, jako najbardziej mobilna część każdego układu chłodzenia, jest bardziej podatny na awarie i zepsucia. W takich przypadkach taniej (i częściej - mądrzej) jest wymienić tylko tę część, niż kupować zupełnie nowy układ. Ponadto, jeśli chcesz, możesz wymienić sprawny wentylator - na przykład na mocniejszy lub mniej hałaśliwy.

Poziom hałasu

Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.

Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:

20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.

Typ podłączenia

Rodzaj złącza zasilania układu chłodzenia. Zasilanie jest zwykle wyprowadzane przez płytę główną, w tym celu najczęściej używane są następujące złącza:

3-pin. Wtyczka 3-pinowa; jest dziś uważana za przestarzałą, lecz nadal jest szeroko stosowana.

4-pin. 4-pinowe złącze. Jego główną zaletą jest możliwość automatycznej regulacji prędkości obrotowej poprzez PWM (więcej szczegółów w „Regulator obrotów”).

Te dwa standardy są wzajemnie kompatybilne: 3-pinowy wentylator można podłączyć do 4-pinowego złącza na płycie głównej i odwrotnie (chyba że PWM jest dostępne w obu przypadkach).

Znacznie mniej powszechne są odmiany takie jak 2-pinowe, instalowane w niektórych niedrogich wentylatorach; 6-pinowe, stosowane w układach chłodzenia z podświetleniem RGB, które wymagają dość mocnego dodatkowego zasilacza; 7-pinowe i 8-pinowe, które są podobne w swojej specyfice do złącza 6-pinowego; jak również zasilanie poprzez standardową wtyczkę MOLEX przewidzianą w poszczególnych wentylatorach komputerowych.

Liczba rurek cieplnych

Liczba rurek cieplnych w układzie chłodzenia

Rura cieplna to szczelna konstrukcja zawierająca ciecz o niskiej temperaturze wrzenia. Gdy jeden koniec rury jest podgrzewany, ciecz ta odparowuje i skrapla się na drugim końcu, pobierając ciepło ze źródła ogrzewania i przekazując je do chłodnicy. Obecnie takie urządzenia są szeroko stosowane głównie w układach chłodzenia procesorów (patrz „Przeznaczenie”) - łączą one podłoże, które ma bezpośredni kontakt z procesorem, i radiator aktywnej chłodnicy. Producenci dobierają liczbę rurek w oparciu o ogólną wydajność chłodnicy (patrz „Maksymalny TDP”); jednak modele o podobnych wartościach TDP mogą nadal znacząco różnić się tym parametrem. W takich przypadkach warto uwzględniać następujące punkty: wzrost liczby rurek cieplnych zwiększa efektywność wymiany ciepła, lecz także zwiększa gabaryty, wagę i koszt całej konstrukcji.

Jeśli chodzi o liczby, w najprostszych modelach przewidziano 1 - 2 rurki cieplne, a w najbardziej zaawansowanych i wydajnych układach procesorowych liczba ta może wynosić 7 lub więcej.
Dynamika cen
Deepcool ICEEDGE MINI często porównują
Zalman CNPS5X Performa często porównują