TDP
Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).
TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).
Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP
do 100 W, najbardziej zaawansowane —
do 250 W i nawet
więcej.
Liczba wentylatorów
Liczba wentylatorów w konstrukcji układu chłodzenia. Większa liczba wentylatorów zapewnia wyższą wydajność (pod warunkiem, że pozostałe parametry są identyczne); z drugiej strony odpowiednio zwiększają się wymiary i hałas podczas pracy. Ponadto zauważamy, że jeżeli inne cechy są podobne, mniejsza liczba dużych wentylatorów jest uważana za bardziej zaawansowany wariant niż większa liczba małych; zobacz "Średnica wentylatora", aby uzyskać szczegółowe informacje.
Średnica wentylatora
Średnica wentylatora(ów) stosowanego w układzie chłodzenia.
Ogólnie rzecz biorąc, większe wentylatory są uważane za bardziej zaawansowane niż małe: wytwarzają one silny przepływ powietrza przy stosunkowo niskich prędkościach i niskim poziomie hałasu. Z drugiej strony duża średnica to duże gabaryty, waga i cena. Jeżeli chodzi o konkretne wartości, to modele mające
40 i mm,
60 mm, są uważane miniaturowymi,
80 mm i
92 mm, - średnimi
120 mm i
135 /
140 mm, - dużymi, a w najbardziej wydajnych układach
do obudówwystępują wentylatory nawet
200 mm.
Min. prędkość obrotowa
Najniższa prędkość, przy której może działać wentylator chłodzący. Jest wskazywana tylko dla modeli z regulatorem prędkości (patrz poniżej).
Im niższa prędkość minimalna (przy tym samym maksimum) - tym szerszy jest zakres regulacji prędkości i tym bardziej możesz spowolnić wentylator, gdy duża wydajność nie jest potrzebna (takie spowolnienie pozwala zmniejszyć zużycie energii i poziom hałasu). Z drugiej strony szeroki zakres ma odpowiedni wpływ na koszt.
Maks. przepływ powietrza
Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.
Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność
nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet
więcej.
Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.
Ciśnienie statyczne
Maksymalne statyczne ciśnienie powietrza generowane przez wentylator podczas pracy.
Parametr ten mierzony jest w następujący sposób: jeżeli wentylator jest zainstalowany na rurze zaślepionej, z której nie ma wylotu powietrza, i ustawiony do nadmuchu, to ciśnienie osiągane w rurze będzie odpowiadało ciśnieniu statycznemu. W praktyce parametr ten określa całkowitą sprawność wentylatora: im wyższe ciśnienie statyczne (pozostałe parametry są takie same), tym łatwiej wentylatorowi „przepychać” wymaganą ilość powietrza przez przestrzeń o dużym oporze, np. przez wąskie szczeliny radiatora lub przez obudowę wypełnioną podzespołami.
Parametr ten również jest używany w niektórych specyficznych obliczeniach, jednak obliczenia te są dość skomplikowane i zwykły użytkownik z reguły nie jest potrzebny - są one związane z kwestiami, które są istotne głównie dla entuzjastów komputerowych. Więcej na ten temat można przeczytać w specjalnych źródłach.
Średni czas bezawaryjnej pracy
Całkowity czas, przez który wentylator chłodzący nie ulegnie awarii. Należy pamiętać, że po wyczerpaniu tego czasu urządzenie niekoniecznie ulegnie zepsuciu – wiele współczesnych wentylatorów ma znaczny zapas wytrzymałości i jest w stanie pracować jeszcze przez jakiś czas. Przy tym, warto oceniać ogólną trwałość układu chłodzenia właśnie według tego parametru.
Min. poziom hałasu
Najniższy poziom hałasu wytwarzany przez układ chłodzenia podczas pracy.
Parametr ten jest wskazywany tylko dla tych modeli, które mają regulację wydajności i mogą pracować ze zmniejszoną mocą. W związku z tym minimalny poziom hałasu to poziom hałasu w trybie „najcichszym”, deklarowana głośność pracy, która w danym modelu nie może być mniejsza.
Dane te przydadzą się przede wszystkim tym, którzy starają się maksymalnie zmniejszyć poziom hałasu i, co jest nazywane, „walką o każdy decybel”. Należy tu jednak zaznaczyć, że w wielu modelach wartości minimalne wynoszą około 15 dB, a w tych najcichszych – tylko 10 – 11 dB. Ta głośność jest porównywalna do szelestu liści i prawie jest niesłyszalna na tle hałasu otoczenia nawet w pomieszczeniu mieszkalnym w nocy, nie mówiąc już o głośniejszych warunkach, a różnica między 11 a 18 dB w tym przypadku nie jest w żaden sposób znacząca dla ludzkiej percepcji. Tabela porównawcza dla dźwięku zaczynającego się od 20 dB jest podana w sekcji "Poziom hałasu" poniżej.
Poziom hałasu
Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.
Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:
20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.