Polska
Katalog   /   Komputery   /   Laptopy i akcesoria   /   Laptopy

Porównanie MSI GP62 8RC World of Tanks Edition [GP62 8RC-054XRU] vs Asus TUF Gaming FX504GD [FX504GD-E4267T]

Dodaj do porównania
MSI GP62 8RC World of Tanks Edition (GP62 8RC-054XRU)
Asus TUF Gaming FX504GD (FX504GD-E4267T)
MSI GP62 8RC World of Tanks Edition [GP62 8RC-054XRU]Asus TUF Gaming FX504GD [FX504GD-E4267T]
od 4 715 zł
Produkt jest niedostępny
od 5 087 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajlaptoplaptop
Wyświetlacz
Przekątna ekranu15.6 "15.6 "
Rodzaj matrycyTN+filmIPS
Powłoka ekranumatowaantyrefleksyjna
Rozdzielczość ekranu1920x1080 (16:9)1920x1080 (16:9)
Częstotliwość odświeżania60 Hz60 Hz
Procesor
SeriaCore i7Core i7
Model8750H8750H
Liczba rdzeni66
Częstotliwość taktowania2.2 GHz2.2 GHz
Częstotliwość TurboBoost / TurboCore4.1 GHz4.1 GHz
Test 3DMark0610051 punkty(ów)10051 punkty(ów)
Test Passmark CPU Mark12398 punkty(ów)12282 punkty(ów)
Test SuperPI 1M9.4 с9.4 с
Pamięć RAM
Pojemność pamięci8 GB8 GB
Maksymalna obsługiwana ilość pamięci RAM32 GB32 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania pamięci2400 MHz2666 MHz
Liczba gniazd pamięci22
Karta graficzna
Rodzaj karty graficznejdedykowanadedykowana
Seria karty graficznejNVIDIA GeForceNVIDIA GeForce
Model karty graficznejGTX 1050GTX 1050
Pamięć karty graficznej2 GB2 GB
Rodzaj pamięciGDDR5GDDR5
Test 3DMark0626422 punkty(ów)26422 punkty(ów)
Test 3DMark Vantage P26560 punkty(ów)26560 punkty(ów)
Dysk
Rodzaj dyskuHDDHDD+SSD M.2
Pojemność dysku1000 GB1000 GB
Pojemność drugiego dysku128 GB
Dodatkowe złącze M.21 szt.
Złącza i interfejsy
Złącza
HDMI
 
miniDisplayPort
S/P-DIF
HDMI
v 1.4
 
 
Czytnik kart pamięci
 /SD/
USB 2.01 szt.1 szt.
USB 3.2 gen12 szt.2 szt.
USB C 3.2 gen11 szt.
Obsługa Alternate Mode
LAN (RJ-45)1 Gb/s1 Gb/s
Multimedia
Kamera internetowa1280x720 (HD)1280x720 (HD)
Zaślepka na kamerę
Liczba głośników4 szt.2 szt.
Zabezpieczenia
blokada kensington / noble
blokada kensington / noble
Klawiatura
PodświetlenieRGBczerwone
Konstrukcja klawiszywyspowewyspowe
Klawiatura numeryczna
Liczba dodatkowych klawiszy2 szt.
Sterowanietouchpadtouchpad
Akumulator
Pojemność baterii41 W*h48 W*h
Napięcie baterii10.8 V
Zasilanie z USB C (Power Delivery)
Szybkie ładowanie
Dane ogólne
Preinstalowany system operacyjnyDOSWindows 10 Home
Materiał obudowyaluminium / tworzywo sztucznealuminium / tworzywo sztuczne
Wymiary (SxGxW)383x260x29 mm384x262x25 mm
Waga2.2 kg2.3 kg
Kolor obudowy
Data dodania do E-Katalogczerwiec 2018maj 2018

Rodzaj matrycy

Technologia, według której wykonana jest matryca laptopa.

Najbardziej rozpowszechnione w naszych czasach są matryce typu TN+film, IPS i *VA; rzadziej spotykane są ekrany typu OLED, AMOLED, QLED, miniLED, a także bardziej specyficzne rozwiązania, takie jak LTPS czy IGZO. Oto bardziej szczegółowy opis wszystkich tych rodzajów:

— TN-film. Najstarsza, najprostsza i najtańsza obecnie technologia. Kluczowe zalety tego typu wyświetlaczy to niski koszt i doskonały czas reakcji. Z drugiej strony takie matryce nie wyróżniają się wysoką jakością obrazu: jasność, dokładność kolorów i kąty widzenia ekranów TN-film są na średnim poziomie. Te wskaźniki są wystarczające do pracy z dokumentami, przeglądania stron internetowych, większości gier itp. Jednak w przypadku poważniejszych zadań wymagających wysokiej jakości i dokładnego obrazu (na przykład designu lub korekcji kolorów zdjęcia/wideo) takie ekrany są prawie bezużyteczne. Wobec tego matryce TN-film są obecnie stosunkowo rzadkie, głównie wśród niedrogich laptopów; bardziej zaawansowane urządzenia wyposażone są w ekrany lepszej jakości, najczęściej IPS.

— IPS (In-Plane Switching). Najpopularniejszy rodzaj matrycy do laptopów ze średniej i wyższej półki cenowej; jednak coraz...częściej występuje w niedrogich modelach, a w przypadku laptopów konwertowalnych i urządzeń „2 w 1” (patrz „Rodzaj”) jest to prawie standardowa opcja. Ekrany tego typu są zauważalnie lepsze od TN-film pod względem jakości „obrazka”: dają jasny, dokładny i bogaty obraz, który prawie się nie zmienia przy zmianie kąta widzenia. Ponadto technologia ta zapewnia szeroką gamę kolorów zgodnie z różnymi specjalnymi standardami (patrz poniżej) i jest odpowiednia do tworzenia wyświetlaczy z zaawansowanymi funkcjami, takimi jak obsługa HDR lub certyfikacja Pantone / CalMAN (patrz również poniżej). Początkowo matryce IPS były drogie i miały niską szybkość reakcji; jednak w naszych czasach stosuje się różne modyfikacje tej technologii, w których te wady są w pełni lub częściowo kompensowane. Jednocześnie różne modyfikacje mogą różnić się cechami praktycznymi: na przykład niektóre zostały stworzone z myślą o maksymalnej wiarygodności obrazu, inne wyróżniają się przystępnym kosztem itp. Więc warto osobno wyjaśnić faktyczne specyfikacje ekranu IPS przed zakupem - zwłaszcza jeśli laptop ma być używany do określonych zadań, w których jakość obrazu ma kluczowe znaczenie.

— *VA. Różne modyfikacje matryc typu „Vertical Alignment”: MVA, PVA, Super PVA, ASVA itp. Różnice między tymi technologiami dotyczą głównie nazwy i producenta. Początkowo matryce tego typu zostały opracowane jako kompromis między IPS (wysokiej jakości, jednak drogą i wolną) a TN-film (szybką, niedrogą, jednak skromną pod względem jakości obrazu). W rezultacie ekrany *VA okazały się tańsze niż IPS i bardziej zaawansowane niż TN-film - mają dobre odwzorowanie kolorów, głęboką czerń i szerokie kąty widzenia. Jednocześnie należy zauważyć, że balans kolorów obrazu na takim wyświetlaczu zmienia się nieco wraz ze zmianą kąta widzenia. Utrudnia to stosowanie matryc *VA w profesjonalnych pracach z kolorem. Ogólnie ta opcja jest przeznaczona głównie dla tych, którzy nie potrzebują idealnej dokładności odwzorowania kolorów, a jednocześnie chcą widzieć jasny i kolorowy obraz.

— OLED. Matryce oparte na tzw. organicznych diodach elektroluminescencyjnych. Kluczową cechą takich wyświetlaczy jest to, że w nich każdy piksel sam jest źródłem światła (w odróżnieniu od klasycznych ekranów LCD, w których podświetlenie jest wykonywane osobno). Ta zasada konstrukcyjna w połączeniu z szeregiem innych rozwiązań zapewnia doskonałą jasność, kontrast i odwzorowanie kolorów, bogatą czerń, najszersze kąty widzenia oraz niewielką grubość samych ekranów. Z drugiej strony, matryce OLED do laptopów w większości okazują się dość drogie i „żarłoczne” pod względem zużycia energii, a także zużywają się nierównomiernie: im częściej i jaśniej piksel się świeci, tym szybciej traci swoje właściwości (jednak zjawisko to staje się zauważalne dopiero po kilku latach intensywnego użytkowania). Ponadto z wielu powodów takie ekrany są uważane za nieodpowiednie do stosowania w grach. Wobec tego matryce tego typu są obecnie rzadko spotykane - głównie w wybranych laptopach klasy high-end zaprojektowanych do profesjonalnej pracy z kolorem i posiadających odpowiednie funkcje, takie jak obsługa HDR, rozbudowana przestrzeń barw i/lub certyfikacja Pantone / CalMAN (patrz poniżej ).

— AMOLED. Typ matryc na organicznych diodach elektroluminescencyjnych, stworzony przez firmę Samsung (jednak jest też używany przez innych producentów). Pod względem głównych cech zbliżony jest do innych typów matryc OLED (patrz wyżej): z jednej strony pozwala na uzyskanie doskonałej jakości obrazu, z drugiej jest drogi i nierównomiernie się zużywa. Jednocześnie ekrany AMOLED mają jeszcze bardziej zaawansowaną wydajność odwzorowania kolorów w połączeniu z lepszą optymalizacją zużycia energii. A niskie rozpowszechnienie tej technologii wynika głównie z tego, że została pierwotnie stworzona dla smartfonów i dopiero niedawno (od 2020 roku) zaczęła być używana w laptopach.

— MiniLED. System podświetlenia ekranu na podłożu z miniaturowych diod LED o wielkości około 100-200 mikronów (µm). Na tej samej płaszczyźnie wyświetlacza udało się kilkukrotnie zwiększyć liczbę diod, a ich macierz rozmieszczono bezpośrednio za samą matrycą. Główną zaletą technologii miniLED można nazwać dużą liczbę stref lokalnego zaciemniania, co w sumie daje lepszą jasność, kontrast i bardziej nasycone kolory z głęboką czernią. Ekrany MiniLED uwalniają potencjał technologii High Dynamic Range (HDR), są odpowiednie dla grafików i twórców treści cyfrowych.

— QLED. Matryce „kropek kwantowych” z przeprojektowanym systemem podświetlenia LED. W szczególności przewiduje zastąpienie wielowarstwowych filtrów barwnych specjalną cienkowarstwową powłoką nanocząstek. Zamiast tradycyjnych białych diod LED panele QLED wykorzystują niebieskie diody LED. W rezultacie kompleks konstruktywnych innowacji pozwala osiągnąć wyższy próg jasności, nasycenia kolorów, ogólną poprawę jakości odwzorowania kolorów, przy jednoczesnym zmniejszeniu grubości ekranu i zmniejszeniu zużycia energii. Druga strona medalu matryc QLED — nietani koszt.

PLS. Typ matrycy opracowany jako alternatywa dla opisanego powyżej IPS i według niektórych doniesień jest jedną z jego modyfikacji. Takie matryce charakteryzują się również wysoką jakością odwzorowania kolorów i dobrą jasnością; ponadto zalety PLS to dobra przydatność do ekranów o wysokiej rozdzielczości (ze względu na dużą gęstość pikseli), a także niższy koszt niż większości modyfikacji IPS oraz niskie zużycie energii. Jednocześnie szybkość reakcji takich ekranów nie jest zbyt duża.

— LTPS. Zaawansowany typ matryc TFT oparty na tzw. niskotemperaturowym krzemie polikrystalicznym. Takie matryce mają wysoką jakość odwzorowania kolorów, a także świetnie sprawdzają się w ekranach o dużej gęstości pikseli - innymi słowy, mogą służyć do tworzenia małych wyświetlaczy o bardzo wysokiej rozdzielczości. Kolejną zaletą jest to, że część elektroniki sterującej można wbudować bezpośrednio w matrycę, zmniejszając całkowitą grubość ekranu. Z drugiej strony matryce LTPS są trudne w produkcji i drogie, dlatego spotyka się je głównie w laptopach klasy premium.

— IGZO. Technologia konstruowania wyświetlaczy LCD z wykorzystaniem materiału półprzewodnikowego na bazie tlenków indu, galu i cynku (w odróżnieniu od bardziej tradycyjnych opcji opartych na amorficznym krzemie). Technologia ta zapewnia szybki czas reakcji, niskie zużycie energii i bardzo wysoką jakość odwzorowania kolorów; ponadto osiąga wysoką gęstość pikseli, dzięki czemu dobrze nadaje się do ekranów o ultra wysokiej rozdzielczości. Jednak na razie takie wyświetlacze w laptopach są niezwykle rzadkie. Tłumaczy się to zarówno wysokim kosztem, jak i faktem, że do produkcji matryc IGZO używa się dość rzadkich metali, co utrudnia produkcję na dużą skalę.

Powłoka ekranu

Błyszcząca. Błyszcząca powierzchnia poprawia ogólną jakość obrazu: przy pozostałych warunkach równych obraz na takim ekranie wygląda jaśniej i bardziej kolorowo niż na matowym. Z drugiej strony na takiej powierzchni bardzo zauważalne są zanieczyszczenia, a w jasnym otoczeniu pojawia się na niej dużo odblasków, które mogą mocno przeszkadzać w oglądaniu. Dlatego zamiast klasycznego połysku w laptopach coraz częściej stosuje się antyrefleksyjną wersję takiej powłoki (patrz poniżej). Niemniej jednak ta opcja nadal nie traci na popularności: kosztuje nieco mniej niż powłoka antyrefleksyjna, a przy miękkim, stosunkowo słabym oświetleniu może nawet zapewnić przyjemniejszy dla oka obraz.

Matowa. Matowa powłoka jest niedroga i nie powoduje odblasków, nawet przy dość jasnym oświetleniu. Z drugiej strony obraz na takim ekranie okazuje się zauważalnie ciemniejszy niż na podobnym błyszczącym wyświetlaczu. Jednak ten szczegół można skompensować różnymi rozwiązaniami konstrukcyjnymi (przede wszystkim dobrym zapasem jasności); więc tę opcję można znaleźć we wszystkich kategoriach nowoczesnych laptopów - od niedrogich modeli do pracy z dokumentami po najlepsze konfiguracje do gier.

Błyszcząca (antyrefleksyjna). Odmiana opisanej powyżej błyszczącej powłoki, mająca na celu ograniczenie odblasków z zewnętrznych źródeł światła. Takie ekrany naprawdę odbijają zauważalnie...mniej niż tradycyjne błyszczące (lub nawet nie dają odblasków); jednocześnie pod względem jakości obrazu są co najmniej lepsze od matowych. Więc to właśnie ten rodzaj powłoki jest obecnie najbardziej popularny.

Test Passmark CPU Mark

Wynik pokazany przez procesor laptopa w teście Passmark CPU Mark.

Passmark CPU Mark to kompleksowy test, bardziej szczegółowy i niezawodny niż popularny 3DMark06 (patrz wyżej). Sprawdza nie tylko możliwości gier procesora, ale także jego wydajność w innych trybach, na podstawie czego wyświetla ogólny wynik; zgodnie z tym wynikiem można dość rzetelnie ocenić procesor jako całość (im więcej punktów, tym wyższa wydajność).

Częstotliwość taktowania pamięci

Częstotliwość taktowania pamięci RAM zainstalowanej w laptopie.

Im wyższa częstotliwość (przy tym samym rodzaju i wielkości pamięci), tym wyższa ogólna wydajność pamięci RAM i tym szybciej laptop poradzi sobie z zadaniami wymagającymi dużej ilości zasobów. Co prawda, moduły o tej samej częstotliwości mogą nieznacznie różnić się rzeczywistą prędkością ze względu na różnice w innych specyfikacjach; ale różnica ta staje się znacząca tylko w bardzo szczególnych przypadkach, dla przeciętnego użytkownika nie jest ona krytyczna. Jeśli chodzi o konkretne wartości, najpopularniejszymi modułami na współczesnym rynku są 2400 MHz, 2666 MHz, 2933 MHz i 3200 MHz. Pamięci o częstotliwości taktowania 2133 MHz lub mniejszej występują głównie w przestarzałych i budżetowych urządzeniach, a w wysokowydajnych zestawach parametr ten wynosi 3733 MHz, 4266 MHz, 4800 MHz, 5200 MHz, 5500 MHz, 5600 MHz i więcej.

Rodzaj dysku

Rodzaj dysku standardowo zainstalowanego w laptopie.

Klasyczne dyski twarde (HDD) we współczesnych laptopach są dość rzadkie w czystej postaci. Zamiast tego, półprzewodnikowe moduły SSD stają się coraz bardziej powszechne, w tym w kombinacjach HDD+SSD i SSHD+SSD. Także warto zaznaczyć, że wśród takich modułów bardzo powszechne są dyski SSD M.2, które ponadto mogą obsługiwać NVMe i/lub należą do zaawansowanej serii Intel Optane. Oto główne cechy tych opcji w różnych kombinacjach (a także inne opcje dysków, które można znaleźć we współczesnych laptopach):

— HDD. Klasyczny dysk twardy wykorzystujący nośnik magnetyczny, nie uzupełniany przez żaden inny rodzaj pamięci. Dyski HDD wyróżniają się niskim kosztem w przeliczeniu na gigabajt pojemności, co umożliwia tworzenie bardzo pojemnych i jednocześnie dość niedrogich nośników. Z drugiej strony takie pamięci są uważane za mniej doskonałe niż dyski SSD: w szczególności są raczej powolne, a poza tym nie są odporne na uderzenia i wstrząsy (to ostatnie jest szczególnie ważne biorąc pod uwagę fakt, że laptopy są pierwotnie urządzeniami przenośnymi). Dlatego ta opcja w naszych czasach jest dość rzadka, głównie wśród niedrogich konfiguracji.

— SSD. Pamięć półprzewodnikowa oparta na technologii Flash. Gene...ralnie dyski tego typu są znacznie droższe niż dyski HDD o tej samej wielkości, ale mają nad nimi szereg zalet - przede wszystkim jest to duża prędkość działania, a także zdolność do bezproblemowego wytrzymywania dość silnych wstrząsów i wibracji. Warto podkreślić jednak, że w tym przypadku chodzi o dyski SSD w oryginalnym formacie, które nie wykorzystują interfejsu M.2, nie należą do serii Optane i nie są modułami eMMC ani UFS (opis tych wszystkich funkcji znajduje się poniżej). Jest to najprostsza i najłatwiej dostępna forma pamięci flash - w szczególności najczęściej wykorzystuje ona połączenie SATA, co nie pozwala na pełne wykorzystanie potencjału takiej pamięci. Z drugiej strony, nawet „zwykłe” moduły SSD nadal działają dużo szybciej niż dyski HDD i są dużo tańsze niż bardziej zaawansowane rozwiązania.

— SSD M.2. Moduł SSD wykorzystujący złącze M.2. Ogólne informacje na temat dysków SSD można znaleźć powyżej; a złącze M.2 zostało zaprojektowane specjalnie dla zaawansowanych, ale niewielkich komponentów wewnętrznych, w tym dysków półprzewodnikowych. Jedną z cech takiego połączenia jest to, że najczęściej odbywa się ono zgodnie ze standardem PCI-E - zapewnia to dużą prędkość transmisji danych (do 8 GB/s, potencjalnie więcej) i pozwala na wykorzystanie wszystkich możliwości dysków SSD. Jednocześnie istnieją moduły M.2 pracujące na starszym interfejsie SATA - jego prędkość nie przekracza 600 MB/s, ale taki sprzęt kosztuje mniej niż moduły z M.2 PCI-E. Aby uzyskać więcej informacji, zobacz „Interfejs dysku M.2” - właśnie ten punkt umożliwia ocenę konkretnych możliwości dysku SSD M.2.

— SSD M.2 Optane. Dysk SSD M.2 (patrz wyżej) należący do serii Intel Optane. Główną cechą takich modułów jest wykorzystanie technologii 3D Xpoint - różni się ona znacznie od NAND, na której budowano większość konwencjonalnych modułów SSD. W szczególności 3D Xpoint pozwala na dostęp do danych na poziomie poszczególnych komórek i obejście się bez dodatkowych operacji, co przyspiesza pracę i zmniejsza opóźnienia. Co więcej, taka pamięć jest znacznie trwalsza. Jej główną wadą jest dość wysoki koszt. Warto też zwrócić uwagę, że przewaga Optane nad bardziej tradycyjnymi modułami SSD jest najbardziej widoczna przy tzw. „płytkiej głębokości kolejki” - czyli przy niewielkim obciążeniu dysku, gdy jednocześnie odbiera on niewielką liczbę żądań. Jednak większość codziennych zadań (praca z dokumentami, surfowanie po sieci, stosunkowo mało wymagające gry) realizowana jest w tym trybie, więc ten szczegół można przypisać zaletom - zwłaszcza, że przewaga Optane, choć maleje, nie znika wraz ze wzrostem obciążenia.

— Dysk SSD M.2 NVMe. NVMe to standard przesyłania danych zaprojektowany specjalnie dla SSD. Wykorzystuje magistralę PCI-E i pozwala maksymalnie ujawnić potencjał tej pamięci, znacznie zwiększając prędkość wymiany danych. Może to być zarówno jedyny dysk, jak i dodatek do dysku HDD lub SSHD. Początkowo uważano, że NVMe ma sens stosować głównie w zestawach komputerowych o wysokiej wydajności, zwłaszcza w grach. Jednak rozwój i niski koszt produkcji sprawiły, że ​​takie dyski spotykane są także w prostszych laptopach.

— HDD+SSD. Obecność dwóch oddzielnych dysków w laptopie - HDD i zwykłego dysku SSD (nie M.2, nie Optane). Zalety i wady tego typu dysków opisano szczegółowo powyżej; a ich połączenie w jeden system pozwala łączyć zalety i częściowo kompensować wady. W takich przypadkach dysk SSD jest zwykle o zauważalnie mniejszej pojemności niż dysk twardy i służy do przechowywania danych, dla których ważna jest wysoka prędkość dostępu: system operacyjny, programy operacyjne itp. Z kolei wygodnie jest na dysku twardym przechowywać informacje o znacznej pojemności, a jednocześnie nie wymagające specjalnej prędkości dostępu; klasycznym przykładem są pliki multimedialne i dokumenty. Ponadto moduł półprzewodnikowy może służyć jako szybka pamięć podręczna dysku twardego - podobnie jak dysk SSHD opisany poniżej. Zwykle wymaga to jednak specjalnych ustawień oprogramowania, podczas gdy tryb „dwóch oddzielnych dysków” jest zwykle dostępny domyślnie.
Warto również zauważyć, że we współczesnych laptopach pakiety HDD są coraz częściej używane nie ze zwykłymi dyskami SSD, ale z bardziej zaawansowanymi modułami M.2 (w tym M.2 Optane). Niemniej jednak ta opcja jest nadal używana - głównie wśród stosunkowo niedrogich konfiguracji.

— SSHD. Dysk typu combo, który łączy dysk twardy (HDD) i moduł półprzewodnikowy (SSD). Różni się od opisanej powyżej kombinacji HDD+SSD pod dwoma względami. Po pierwsze, oba nośniki są w tej samej obudowie i są postrzegane przez system jako całość. Po drugie, przeważnie dysk twardy jest używany bezpośrednio do przechowywania danych, a pamięć SSD pełni rolę usługową - działa jako szybka pamięć podręczna dla dysku twardego. W praktyce wygląda to tak: dane z dysku twardego, do którego użytkownik najczęściej uzyskuje dostęp, są kopiowane na dysk SSD i przy kolejnym dostępie ładowane są z dysku SSD, a nie z HDD. Pozwala to znacznie przyspieszyć pracę w porównaniu z konwencjonalnymi dyskami twardymi. Co prawda pod względem wydajności takie „hybrydy” są nadal gorsze nawet od konwencjonalnych dysków SSD, nie wspominając o rozwiązaniach M.2 i Optane - ale kosztują znacznie mniej.

— HDD+SSD M.2. Połączenie klasycznego dysku twardego z półprzewodnikowym modułem SSD przy użyciu złącza M.2. Aby uzyskać więcej informacji na temat tej kombinacji, zobacz „HDD+SSD”: prawie wszystko, co tam podano, ma również znaczenie dla tego przypadku, chyba, że dyski SSD M.2 są w stanie zapewnić wyższą prędkość operacyjną (patrz również powyżej - w punkcie „SSD M.2”).

— HDD+Optane M.2. Połączenie klasycznego dysku twardego z półprzewodnikowym modułem SSD, który wykorzystuje złącze M.2 i należy do serii Intel Optane. Ta kombinacja jest ogólnie podobna do pakietu „HDD+SSD” (patrz wyżej), chyba że możliwości dysków Optane są bardziej zaawansowane (patrz także powyżej - „SSD M.2 Optane”).

— SSHD+SSD M.2. Połączenie dysku SSD z półprzewodnikowym modułem SSD M.2. Ogólnie jest podobny do kombinacji „HDD + SSD M.2” (patrz wyżej), z tym, że zamiast konwencjonalnego dysku twardego używany jest bardziej zaawansowany i szybki dysk hybrydowy (patrz również powyżej). To dodatkowo zwiększa koszt, ale poprawia wydajność.

— eMMC. Rodzaj dysków półprzewodnikowych, pierwotnie używany jako wbudowana pamięć trwała w smartfonach i tabletach, ale ostatnio instalowany w laptopach. Różni się od SSD (patrz wyżej) z jednej strony niższym kosztem i dobrą energooszczędnością, z drugiej strony mniejszą prędkością i niezawodnością. W związku z tym eMMC występuje obecnie głównie wśród laptopów konwertowalnych i laptopów-tabletów (patrz „Rodzaj”) - dla nich niski pobór mocy jest ważniejszy niż maksymalna wydajność. Należy również pamiętać, że takie dyski są zwykle wbudowane i nie wymagają wymiany.

— HDD+eMMC. Połączenie klasycznego dysku twardego z modułem półprzewodnikowym eMMC. Cechy każdego typu dysków zostały szczegółowo opisane powyżej, a ich kombinacja stosowana jest głównie w urządzeniach typu „laptop-tablet” (patrz „Rodzaj”). W tym przypadku dysk eMMC jest instalowany w górnej części urządzenia i służy do przechowywania systemu operacyjnego oraz najważniejszych danych, do których potrzebuje się stałego dostępu; a dysk twardy znajdujący się w dolnej połowie służy jako dodatkowa pamięć dla dużych ilości danych (na przykład kolekcji filmów).

— SSD M.2+eMMC. Połączenie w jednym laptopie dwóch modułów półprzewodnikowych - SSD M.2 i eMMC. Aby uzyskać więcej informacji na temat cech obu typów pamięci, zobacz powyżej, a ich łączenie jest raczej egzotyczną opcją. Służy głównie do zwiększania całkowitej wielkości pamięci półprzewodnikowej bez znacznego zwiększania kosztów (warto przypomnieć, że eMMC jest tańsze niż dysk SSD M.2 o tym samym rozmiarze). Ponadto, jeśli moduł eMMC jest zwykle wbudowany, to dysk SSD M.2 jest z definicji wymienny, a w razie potrzeby można go zastąpić innym dyskiem.

— UFS. Kolejny rodzaj pamięci półprzewodnikowej, pierwotnie przeznaczony dla smartfonów i tabletów - wraz z opisanym powyżej eMMC. Różni się od tego ostatniego zarówno wysoką wydajnością, jak i zwiększonym kosztem. Wobec tego takie dyski są niezwykle rzadkie wśród laptopów: tam, gdzie brakuje możliwości eMMC, producenci zwykle używają pełnowartościowych dysków SSD.

Pojemność drugiego dysku

Pojemność drugiego (dodatkowego) dysku, zainstalowanego w laptopie.

Dwa dyski, używane w laptopie jednocześnie, najczęściej odnoszą się do różnych typów - na przykład dysk HDD i dysk SSD jednego lub drugiego typu (więcej informacji można znaleźć w punkcie „Rodzaj dysku”); jednak istnieją również konfiguracje na dwa nośniki tego samego typu (na przykład dysków twardych). W każdym razie, jeśli poszczególne pamięci masowe mają różną pojemność, wówczas pamięć masowa o mniejszej pojemności jest zwykle uważana za dodatkową. Wynika to z faktu, że taka pamięć masowa często pełni funkcję pomocniczą i ma za zadanie nie tyle przechowywać dane, ile przyspieszać działania systemu. Typowym przykładem jest właśnie połączenie HDD+SSD, gdzie właśnie dysk SSD jest uważany za drugi nośnik. Natomiast w przypadku obecności dwóch dysków twardych, zwykle mają one tę samą pojemność i wtedy podział na pierwszy i drugi dysk jest czysto umowny.

Niemniej jednak rzeczywista pojemność drugiego dysku jest na ogół zauważalnie niższa niż pojemność dysku głównego. W wielu urządzeniach parametr ten nie przekracza 128 GB; średnia wartość to 250 GB(dokładniej 240 – 256 GB); a pojemność około 500 GB lub więcej jest w tym przypadku uważana za całkiem pokaźną.

Dodatkowe złącze M.2

Liczba dodatkowych złączy M.2 na płycie głównej laptopa.

Każde wolne złącze M.2 jest w danym przypadku nazywane dodatkowym (jeśli jest zainstalowany dysk, złącze jest uważane za główne, a jego specyfikacja jest podawana powyżej - patrz „Interfejs złącza M.2” i inne). Takich wolnych złączy może być kilka - dlatego w naszym katalogu podaje się liczbę dodatkowych złączy M.2, a nie tylko ich obecność.

Tak czy inaczej, parametr ten przyda się przede wszystkim, jeśli laptop kupowany jest z myślą o dalszym uaktualnieniu. Pozwala oszacować, ile dysków SSD pod M.2 (lub innych peryferiów z takim podłączeniem) można dodatkowo zamontować w urządzeniu. Jednocześnie przy wyborze konkretnych komponentów należy również wziąć pod uwagę interfejs oraz rozmiary wolnych złączy M.2 (szczegóły patrz poniżej).

Złącza

Złącza przewidziane w konstrukcji laptopa.

Ten punkt zawiera głównie dane dotyczące wyjść wideo: VGA, HDMI (wersje 1.4, 2.0, 2.1 i ich odmiany), miniHDMI, microHDMI, DisplayPort, miniDisplayPort). Ponadto mogą tutaj być wskazane inne typy złączy: audio S/P-DIF, serwisowy port COM. Ale informacje o takich interfejsach jak pełnowymiarowe USB, USB C, Thundebolt i LAN są podane w osobnych punktach (patrz niżej).

- VGA. Analogowe wyjście wideo, znane również jako gniazdo D-Sub 15 pin. Jest technicznie uważane za przestarzałe: ma niską odporność na zakłócenia, nie zapewnia transmisji dźwięku, a maksymalna obsługiwana rozdzielczość w praktyce nie przekracza 1280x1024. Niemniej jednak wejścia VGA są nadal dość powszechne w monitorach w dzisiejszych czasach i można je również znaleźć w innych rodzajach sprzętu wideo - w szczególności projektorach. Dlatego niektóre nowoczesne laptopy, głównie do celów multimedialnych, wyposażone są w podobne wyjścia - licząc na podłączenie do wspomnianych urządzeń wideo.

- HDMI. Najpopularniejszy współcześnie interfejs do pracy z treściami HD. Wykorzystuje cyfrową transmisję danych, umożliw...ia jednoczesną transmisję wideo w wysokiej rozdzielczości i wielokanałowego dźwięku jednym przewodem. Większość współczesnych monitorów, telewizorów, projektorów i innych urządzeń wideo obsługujących HD ma co najmniej jedno wejście HDMI; więc ten rodzaj wyjścia obecnie jest niezwykle powszechny w laptopach.

- microHDMI i miniHDMI. Zmniejszone wersje HDMI opisane powyżej: są całkowicie podobne pod względem funkcjonalności i różnią się jedynie wielkością złącza. Są instalowane głównie w najcieńszych i najbardziej kompaktowych laptopach, dla których pełnowymiarowe HDMI jest zbyt nieporęczne.

Porty HDMI i mini/microHDMI we współczesnych laptopach mogą odpowiadać różnym wersjom:
  • v 1.4. Najwcześniejszy z rozpowszechnionych standardów, wydany w 2009 roku. Umożliwia transmisję sygnału w rozdzielczości do 4096x2160 z prędkością 24 kl./s, a przy rozdzielczości Full HD liczba klatek może osiągnąć 120 kl./s; możliwa jest również transmisja wideo 3D.
  • v 1.4a. Pierwszy dodatek do wersji 1.4, który obejmował w szczególności dodanie dwóch dodatkowych formatów wideo 3D.
  • v 1.4b. Druga aktualizacja standardu HDMI 1.4, która wprowadziła jedynie drobne doprecyzowania i uzupełnienia specyfikacji v 1.4a.
  • v 2.0. Globalna aktualizacja HDMI wprowadzona w 2013 roku. Złącze znane również jako HDMI UHD, umożliwia strumieniowe przesyłanie wideo 4K z prędkością klatek do 60 kl./s. Liczba kanałów audio może osiągnąć 32, jednocześnie może być emitowanych do 4 strumieni audio. Ponadto wprowadzono obsługę proporcji 21:9 i niektóre ulepszenia treści 3D.
  • v 2.0a. Pierwsza aktualizacja HDMI 2.0. Kluczową innowacją jest kompatybilność z treścią HDR (patrz „Obsługa HDR”).
  • v 2.0b. Druga aktualizacja wersji 2.0. Kluczowe innowacje dotyczą głównie pracy z HDR - w szczególności dodano obsługę HDR10 i HLG.
  • v 2.1. Jedna z najnowszych wersji wydana jesienią 2017 roku. Dalszy wzrost przepustowości umożliwił obsługę wideo 4K, a nawet 8K przy częstotliwości odświeżania do 120 kl./s. Ponadto kluczowe ulepszenia obejmują rozszerzone możliwości pracy z HDR. Należy pamiętać, że do pełnego wykorzystania zalet HDMI v2.1 wymagane są kable HDMI Ultra High Speed, chociaż podstawowa funkcjonalność jest dostępna przy użyciu zwykłych kabli.
- DisplayPort. Cyfrowy port o dużej prędkości umożliwia przesyłanie tak wideo, jak i dźwięku w jakości HD. Bardzo podobny do HDMI, zapewnia większą prędkość przesyłania danych i pozwala na użycie dłuższych kabli, ale mniej powszechny, używany głównie w urządzeniach komputerowych.

- miniDisplayPort. Zmniejszona wersja DisplayPort opisanego powyżej, zaprojektowana w celu uczynienia złącza bardziej kompaktowym; poza wymiarami nie różni się od oryginalnego interfejsu. Jakiś czas temu było to standardowe złącze wideo do laptopów Apple; a nawet interfejs Thunderbolt, który je zastąpił, w wersjach 1 i 2 (patrz poniżej) wykorzystuje złącze identyczne ze złączem miniDisplayPort.

Zarówno pełnowymiarowy DisplayPort, jak i jego zmniejszona odmiana mogą należeć do różnych wersji. Najpopularniejsze dziś opcje to:
  • v 1.2. Najwcześniejsza z rozpowszechnionych w laptopach wersji, wydana w 2010 roku. Najważniejsze innowacje prezentowane w tej wersji to obsługa 3D, możliwość jednoczesnej pracy z kilkoma strumieniami wideo w celu szeregowego łączenia ekranów (daisy chain), a także możliwość pracy przez złącze miniDisplayPort. Przepustowość v 1.2 jest wystarczająca, aby w pełni obsługiwać wideo 5K przy 30 klatkach na sekundę i wideo 8K - z pewnymi ograniczeniami.
  • v 1.2a. Aktualizacja wersji 1.2, wydana w 2013. Jedną z najbardziej godnych uwagi innowacji jest możliwość pracy z AMD FreeSync (patrz wyżej). Przepustowość i obsługiwane rozdzielczości pozostały niezmienione.
  • v 1.3. Wersja DisplayPort wydana w 2014 roku. W porównaniu z poprzednią wersją przepustowość wzrosła 1,5 razy na linię i prawie 2 razy - ogólnie na złączu (odpowiednio 8,1 Gb/s i 32,4 Gb/s). Umożliwiło to między innymi zapewnienie pełnej obsługi wideo 8K przy 30 kl./s, a także zwiększenie maksymalnej liczby klatek na sekundę w standardach 4K i 5K do 120 i 60 kl./s odpowiednio. W trybie „daisy chain” standard ten pozwala na pracę z dwoma ekranami 4K UHD (3840x2160) przy częstotliwości odświeżania 60 Hz lub z czterema ekranami 2560x1600 przy tej samej częstotliwości. Ponadto w tej wersji wprowadzono obsługę trybu Dual-mode, co zapewnia kompatybilność z interfejsami HDMI i DVI poprzez najprostsze adaptery pasywne.
  • v 1.4. Wersja wprowadzona w marcu 2016 r. Przepustowość pozostaje niezmieniona w stosunku do poprzedniego standardu, ale dodano kilka ważnych funkcji - w szczególności obsługę Display Stream Compression 1.2, standardu HDR10 i Rec. 2020, a maksymalna liczba obsługiwanych kanałów audio wzrosła do 32.
  • v 1.4a. Aktualizacja wydana w 2018 roku „po cichu” - nawet bez oficjalnego komunikatu prasowego. Główną innowacją była aktualizacja technologii Display Stream Compression z wersji 1.2 do wersji 1.2a.


- S/P-DIF. Wyjście do transmisji dźwięku cyfrowego, w tym wielokanałowego. Ma dwa rodzaje - optyczny i elektryczny; pierwszy jest absolutnie niewrażliwy na zakłócenia, ale wykorzystuje raczej delikatne kable, drugi nie wymaga szczególnej ostrożności w obsłudze, ale może podlegać zakłóceniom (choć kable są zwykle ekranowane). Laptopy używają głównie optycznego S/P-DIF, a ze względu na kompaktowość, złącze to jest połączone z gniazdem mini-Jack do słuchawek. Jednak w każdym razie konkretne cechy tego interfejsu należy wyjaśniać osobno.

- Port COM. Uniwersalny interfejs do podłączania różnych urządzeń zewnętrznych, w szczególności modemów telefonicznych, jak również do bezpośredniego połączenia między dwoma komputerami. Znany również jako RS-232 (zgodnie z nazwą złącza). Obecnie jest uważany za przestarzały ze względu na rozpowszechnianie się bardziej kompaktowych, szybszych i bardziej funkcjonalnych interfejsów, głównie USB. Niemniej jednak wiele typów urządzeń, w tym specjalistycznych, wykorzystuje właśnie port COM jako interfejs sterujący. Do takich urządzeń należą zasilacze awaryjne, odbiorniki satelitarne i urządzenia komunikacyjne, systemy bezpieczeństwa i alarmowe itp. W związku z tym porty COM, chociaż prawie nigdy nie są używane w laptopach konsumenckich, nadal występują w niektórych specjalistycznych modelach.

Czytnik kart pamięci

Urządzenie do pracy z wymiennymi kartami pamięci. Z reguły wygląda jak charakterystyczny slot na obudowie laptopa, do którego wkłada się nośnik. Istnieją różne standardy dla kart pamięci, lista kompatybilnych standardów jest podana w uwadze do tego punktu. Należy w tym miejscu zauważyć, że w przypadku nowoczesnych laptopów niemal obowiązkowa jest obsługa formatu SD i jego modyfikacji - SD HC, często także SD XC; można przewidzieć również inne opcje, ale nie otrzymały one takiego podziału. W każdym razie funkcja ta jest wygodna, ponieważ karty pamięci są szeroko stosowane w innych rodzajach elektroniki: na przykład SD jest ogólnie przyjętym standardem w aparatach cyfrowych, a microSD (kompatybilne z gniazdami SD poprzez najprostsze adaptery) jest w smartfonach. W związku z tym obecność czytnika kart znacznie ułatwia wymianę danych między laptopem a urządzeniami zewnętrznymi.
Asus TUF Gaming FX504GD często porównują