Polska
Katalog   /   Komputery   /   Sprzęt sieciowy   /   Serwery plików NAS

Porównanie D-Link DNS-320L vs Synology DiskStation DS115j RAM 256 MB

Dodaj do porównania
D-Link DNS-320L
Synology DiskStation DS115j RAM 256 MB
D-Link DNS-320LSynology DiskStation DS115j RAM 256 MB
od 206 zł
Produkt jest niedostępny
od 571 zł
Produkt jest niedostępny
TOP sprzedawcy
Obudowawolnostojącawolnostojąca
Dyski
Kieszenie na dyski 3.5"2 szt.1 szt.
Maks. pojemność dysków10 TB
SATA 2
SATA 3
Funkcja RAID
RAID 0
RAID 1
JBOD
Standard
 
 
 
 
Złącza i sieć
Liczba portów LAN1 szt.1 szt.
Prędkość LAN1 Gb/s1 Gb/s
USB 2.01 szt.2 szt.
Funkcje i możliwości
Funkcje
serwer www
serwer FTP
multimedia (DLNA, iTunes, uPnP)
 
 
kopia zapasowa
DDNS
 
 
serwer FTP
multimedia (DLNA, iTunes, uPnP)
serwer pocztowy
serwer monitoringu
kopia zapasowa
DDNS
integracja z domenami
Część sprzętowa
System operacyjny
DSM 5.1 /Linux/
Procesor
Marvell Armada 370 /800 MHz/
Pamięć RAM256 MB
Zarządzanieprzeglądarka wwwprzeglądarka www / program narzędziowy
Dane ogólne
Pobór mocy15.7 W10.5 W
Chłodzenieaktywneaktywne
Poziom hałasu18.1 dB
Wymiary90x144x193 mm166x71x224 mm
Waga0.71 kg
Data dodania do E-Katalogpaździernik 2015luty 2015

Kieszenie na dyski 3.5"

Liczba slotów na dyski w formacie 3.5", przewidziana w konstrukcji serwera.

Początkowo 3.5" to tradycyjny, najbardziej popularny format dysków do systemów serwerowych. Jest zauważalnie większy niż 2.5", za to pozwala na tworzenie pojemnych, niedrogich (w przeliczeniu na gigabajty) i niezawodnych nośników, w których w dodatku łatwiej jest wdrożyć różne dodatkowe funkcje. Dlatego, szczególnie w serwerach NAS, ten format również cieszy się popularnością; sloty pod 2.5" występują w takim sprzęcie znacznie rzadziej, a w większości przypadków uzupełniają one 3.5".

Jeśli chodzi o liczbę slotów, może się ona wahać od 2 (lub nawet 1) w najbardziej prostych systemach stacjonarnych oraz do 8 i więcej w profesjonalnych rozwiązaniach do instalacji w stojaku. Natomiast od konkretnej liczby dysków zależy nie tylko ich maksymalna pojemność, lecz także niektóre inne cechy pracy - przede wszystkim fizyczna możliwość korzystania z takiego lub innego poziomu RAID.

Maks. pojemność dysków

Ten element charakteryzuje maksymalne możliwości urządzenia do podłączania napędów. W ten sposób możesz zrozumieć, ile maksymalnej pamięci możesz dodać do serwera NAS.

SATA 3

Trzecia wersja standardu SATA wykorzystywanego w technologii komputerowej do łączenia dysków wewnętrznych. Różni się od poprzedniej wersji SATA 2 (patrz wyżej) zwiększoną prędkością przesyłania danych – w praktyce około 5,9 Gb/s (600 MB/s) – a także szeregiem optymalizacji zużycia energii. Możesz podłączyć dyski do SATA 3 i wcześniejszych wersji, jednak szybkość działania przy takim połączeniu będzie ograniczona charakterystyką samego dysku.

Funkcja RAID

Serwer NAS obsługuje technologię RAID. Termin ten jest skrótem od „redundantnej macierzy niezależnych dysków”, co oznacza „nadmiarową macierz niezależnych dysków”. W związku z tym tylko modele z więcej niż jednym gniazdem do przechowywania mogą mieć tę funkcję (patrz „Gniazda do przechowywania”).

Istnieje kilka opcji łączenia dysków w nadmiarową macierz, różnią się one szeregiem cech: niektóre koncentrują się na zwiększeniu szybkości działania, inne - na odporności na awarie. Jednak wszystkie macierze RAID mają dwie kluczowe różnice w porównaniu z systemami z dyskami bez macierzy. Po pierwsze, macierz RAID jest postrzegana przez system jako jeden dysk twardy. Drugi to „redundancja”: całkowita objętość dysków zawartych w macierzy musi być większa niż objętość danych, która ma być na nich przechowywana. Wynika to z faktu, że macierz wykorzystuje informacje serwisowe, które muszą być przechowywane na tych samych dyskach (jednak wyjątkiem jest RAID 0, patrz niżej).

Najpopularniejsze obecnie wersje RAID to:

- RAID 0. Tablica dwóch lub więcej dysków, na których informacje są zapisywane przez przeplatanie: najpierw dane są dzielone na bloki o tej samej długości, a następnie każdy z tych bloków jest kolejno zapisywany na „własnym” dysku. Na przykład, jeśli macierz RAID 0 składa się z 3 dysków, a plik jest podzielony na 7 części, to pierwszy dysk będzie zawierał części 1, 4 i 7, drugi - 2 i 5, a trzeci - 3 i 6. Osobliwości...ą tej wersji jest to, że w rzeczywistości nie jest to RAID, ponieważ pozbawiony "redundancji" - wielkość macierzy odpowiada sumie wolumenów dysków. Główną zaletą RAID 0 jest to, że znacznie poprawia wydajność; im wyższy, tym więcej dysków jest zawartych w macierzy. Z drugiej strony niezawodność takich systemów jest niższa niż pojedynczych dysków: w przypadku awarii któregoś z dysków cała macierz staje się niedostępna, a im więcej dysków jest używanych, tym większe prawdopodobieństwo tego. Minimalna liczba dysków dla RAID 0 to dwa.

- RAID 1. W tego typu macierzach informacje zapisywane są na zasadzie dublowania: dwa dyski, na których informacje są całkowicie identyczne. Zapewnia to bardzo solidną odporność systemu na awarie: dane zawarte w macierzy będą dostępne w pełnym wolumenie, bez dodatkowych poprawek i poważnych spadków wydajności, nawet w przypadku całkowitej awarii jednego z dysków. Ponadto w ten sposób osiąga się pewien wzrost szybkości odczytu, a wymiana na gorąco (patrz wyżej) zwykle nie powoduje problemów. Wadą są wysokie koszty budowy: trzeba zapłacić za dwa dyski twarde, uzyskując objętość jednego. Jednak w niektórych przypadkach może to być całkowicie akceptowalna cena za zwiększoną niezawodność.

- RAID 5. W takich macierzach, w przeciwieństwie do RAID 0 i 1 (patrz wyżej), na dyskach przechowywane są nie tylko podstawowe informacje, ale także informacje serwisowe - w postaci danych do korekcji błędów (tzw. sum kontrolnych). W takim przypadku oba typy informacji są rozłożone równomiernie na wszystkich dyskach. Na przykład w macierzy RAID 5 składającej się z 4 dysków pierwszy zapisywalny „kawał” danych zostanie podzielony równo między dyski 1, 2 i 3, a suma kontrolna zostanie zapisana na dysku 4; druga część znajduje się między dyskami 1,2 i 4, a suma kontrolna jest zapisywana na dysku 3 itd. Zapewnia to dobrą odporność na awarie: macierz zapewnia dostęp do danych w przypadku całkowitej awarii któregokolwiek z dysków. Ponadto macierz RAID 5 charakteryzuje się bardzo niskim poziomem redundancji: objętość robocza macierzy równa się rozmiarowi najmniejszego dysku pomnożonemu przez (n-1), gdzie n to całkowita liczba dysków. Główne wady RAID 5 to jego stosunkowo niska wydajność, która w przypadku awarii spada jeszcze bardziej; wynika to z obfitości dodatkowych operacji związanych z wykorzystaniem sum kontrolnych. Ponadto, jeśli jeden z dysków ulegnie awarii, niezawodność pozostałej macierzy zostaje zredukowana do poziomu RAID 0 (patrz wyżej), a pozostałe dyski są znacznie obciążone, co dodatkowo zwiększa ryzyko dodatkowej awarii; jeśli dwa dyski ulegną awarii, dane można odzyskać tylko za pomocą specjalnych metod. Minimalna wymagana liczba dysków dla RAID 5 to trzy.

- RAID 10. Kombinacja macierzy typu RAID 0 i RAID 1 (patrz wyżej): dyski łączone są parami w macierze lustrzane RAID 1, a cały system działa na zasadzie RAID 0, z sekwencyjnym zapisem informacji na każdej parze dysków. Ten schemat pozwala zachować wysoką wydajność charakterystyczną dla klasycznej macierzy RAID 0, eliminując jednocześnie jej główną wadę - zawodność. Niezależnie od liczby dysków macierz RAID 10 jest całkowicie niewrażliwa na awarię pojedynczego dysku i może z łatwością przetrwać utratę połowy dysków, jeśli wszystkie znajdują się w różnych parach lustrzanych. Jednocześnie jednoczesny rozpad jednej pary prowadzi do nieodwracalnej utraty informacji. Kolejną wadą jest wysoka redundancja charakterystyczna dla RAID 1: pojemność użytkowa macierzy to połowa sumy woluminów wszystkich dysków. Do zbudowania macierzy RAID 10 wymagane są co najmniej 4 dyski, a w każdym razie liczba musi być parzysta.

- JBOD. Skrót od „Just a bunch of disks” – „tylko kilka dysków”. Ta nazwa wprawdzie zgrubna, ale dość trafnie opisuje cechy macierzy tego typu: JBOD nie zapewnia „redundancji”, nie wykorzystuje dodatkowych technologii, takich jak sumy kontrolne (patrz RAID 5), a objętość tablicy jest równa łączna objętość wszystkich zawartych w niej dysków. Jednocześnie dyski są połączone w swego rodzaju szereg. Oznacza to, że podczas zapisywania każdego następnego pliku, pozostałe wolne miejsce na poprzednim dysku w kolejce jest najpierw wypełniane, a jeśli nie ma wystarczającej ilości miejsca, reszta danych jest zapisywana na następnym. Na przykład, jeśli zapiszesz dwa pliki o pojemności 70 GB do pustej tablicy JBOD składającej się z dysków o pojemności 100 GB, pierwszy plik zmieści się w całości na pierwszym dysku, a drugi zajmie pozostałe 30 GB na pierwszym i 40 GB na drugim. . Podobnie, jeśli objętość pliku przekracza objętość całego dysku - w naszym przykładzie plik 120 GB zajmie cały pierwszy dysk i 20 GB drugiego. Zaletami JBOD są dobra wydajność przy niskim obciążeniu procesora oraz możliwość łączenia dysków o różnych rozmiarach i prędkościach. Ponadto są one nieco bardziej odporne na awarie niż podobne pod wieloma względami macierze RAID 0 (patrz wyżej): awaria pojedynczego dysku niekoniecznie prowadzi do nieodwracalnej utraty danych dla całej macierzy. Jednocześnie niezawodność JBODs jest nadal nieco niższa niż pojedynczych dysków, dlatego można je traktować jedynie jako narzędzie do poprawy wydajności.

Zauważ, że różnorodność standardów RAID stosowanych we współczesnych serwerach NAS nie ogranicza się do powyższych. Dodatkowe opcje mogą obejmować między innymi:

- RAID 3 i RAID 4 są podobne do opisanego powyżej RAID 5, jednak w tych formatach sumy kontrolne są zapisywane na jednym dedykowanym dysku i nie są równomiernie rozłożone na wszystkich dyskach. Poprawia to wydajność (dla RAID 3 tylko w niektórych przypadkach), ale zmniejsza niezawodność dysku kontrolnego. Z wielu powodów są one dość słabo rozłożone.

- RAID 6 - kolejny odpowiednik RAID 5, różni się tym, że wykorzystuje nie jeden, a dwa zestawy sum kontrolnych, również równomiernie rozłożonych na wszystkich dyskach. To znacznie zwiększa niezawodność, ale obniża wydajność i zwiększa poziom redundancji - woluminy nie jednego, ale dwóch dysków „wypadają” z całkowitego pojemności.

- RAID 0 + 1. Może oznaczać 2 opcje. Najpopularniejsza jest macierz dwóch macierzy RAID 0 (w paski) połączonych w RAID 1 (dublowanie). Dla niektórych producentów RAID 0+1 jest używany jako oznaczenie dla zaawansowanej technologii, która pozwala na „odbicie lustrzane” informacji na nieparzystej liczbie dysków: na przykład w macierzy trzydyskowej dublowany będzie pierwszy fragment danych na dyskach 1 i 2, drugi - na 2 i 3, trzeci - na 3 i 1 itd.

- RAID 50 i RAID 60. Macierze takie jak odpowiednio RAID 5 i RAID 6 składają się z grup dysków połączonych w RAID 0. Zapewniają wysoką niezawodność i wydajność, ale są drogie i trudne w utrzymaniu.

Istnieją również inne warianty „złożonego” RAID – na przykład w RAID 51 dwie macierze RAID 5 są ułożone w „dublowaną” parę.

USB 2.0

Liczba portów USB 2.0 przewidzianych w konstrukcji serwera NAS.

Złącza USB są używane w technologii komputerowej do podłączania różnych zewnętrznych urządzeń peryferyjnych. W przypadku serwerów NAS mówimy najczęściej o dyskach zewnętrznych - pendrive'ach, dyskach twardych itp. Dzięki temu można przepisać informacje z dysku wewnętrznego na zewnętrzny (np. do celów backupu) lub odwrotnie, a nawet zwiększyć całkowitą objętość roboczą serwera... Ponadto w modelach z wyjściem VGA (patrz poniżej) klawiaturę można również podłączyć do portu USB, a w modelach z funkcją serwera wydruku (patrz „Funkcje oprogramowania”) odpowiednio — drukarkę. Dla większej wygody złącze USB można przenieść na panel przedni (patrz poniżej).

Jeśli chodzi konkretnie o USB 2.0, dziś ta wersja jest powszechnie uważana za przestarzałą - ze względu na stosunkowo niską prędkość (do 480 Mbit/s) i niską moc dostarczaną przez złącze. Port ten może służyć do podłączania urządzeń peryferyjnych i nowszych wersji, ale prędkość będzie ograniczona możliwościami wersji 2.0, a zasilanie może być niewystarczające. Dlatego we współczesnych serwerach NAS takie złącza są dość rzadkie - głównie jako dodatek do nowszego i szybszego USB 3.2 gen1 (patrz poniżej), przeznaczonego do stosunkowo bezpretensjonalnych urządzeń peryferyjnych, takich jak klawiatury.

Funkcje

- Serwer WWW. Możliwość wykorzystania urządzenia jako serwera WWW. To na tego typu serwerach budowany jest Internet w obecnej formie: komputer użytkownika wysyła żądanie do serwera WWW za pośrednictwem przeglądarki i otrzymuje odpowiedź w postaci strony, obrazu, strumienia wideo/audio itp. W związku z tym obecność tej funkcji w NAS umożliwia przeglądanie jej zawartości w postaci stron internetowych za pomocą zwykłej przeglądarki - z grubsza mówiąc „chodź po serwerze jak w Internecie”. W takim przypadku urządzenie może być używane nie tylko jako zasób lokalny, ale także jako host sieciowy - na przykład do hostowania na nim oficjalnej strony internetowej firmy.

- serwer FTP. FTP to skrót od File Transfer Protocol, czyli "Protokół Przesyłania Plików". Funkcja ta umożliwia korzystanie z serwera NAS jako współdzielonego magazynu danych: użytkownicy mogą przesyłać własne pliki do magazynu i stamtąd je pobierać. Narzędzia FTP dają szerokie możliwości konfiguracji dostępu do zawartości serwera - na przykład można ustawić ograniczenia na zapis informacji dla poszczególnych użytkowników lub w osobnych folderach, zamknąć niektóre treści hasłami itp. Z tego powodu protokół ten jest znacznie wygodniejszy do pracy z poszczególnymi plikami niż HTTP, który jest używany w serwerach WWW (patrz wyżej). Dlatego, jeśli planujesz utworzyć współdzieloną pamięć masową w sieci, wskazane jest posiadanie NAS z funkcją serwera F...TP.

- Serwer wydruku. Funkcja serwera druku ułatwia współużytkowanie tej samej drukarki przez użytkowników sieci. Drukarka łączy się z NAS, zwykle przez interfejs USB (patrz wyżej), a NAS działa jako pośrednik: przyjmuje zadania drukowania od użytkowników i wysyła je do drukarki. Dodatkowe funkcje serwera druku mogą obejmować optymalizację kolejkowania, lokalne przechowywanie prac (dokument zostanie wydrukowany nawet wtedy, gdy komputer, z którego zadanie zostało wysłane, jest wyłączony), usuwanie „zaległych” zadań, a nawet śledzenie liczby stron i pozostałych kieszonkowe dzieci. Korzystanie z serwera NAS z funkcją serwera druku jest często wygodniejsze niż podłączenie drukarki przez jeden ze zwykłych komputerów w sieci.

- Multimedia (DLNA, iTunes, uPnP). Serwer NAS obsługuje różne funkcje związane z wymianą treści multimedialnych. Na przykład DLNA (Digital Living Network Alliance) to standard, którego jedną z funkcji jest ogólny dostęp różnych urządzeń sieciowych do wideo, audio i zdjęć przechowywanych w sieci lokalnej; obsługuje również przesyłanie strumieniowe. Odtwarzacz iTunes ma podobne funkcje sieci multimedialnych do DLNA, ale został zaprojektowany specjalnie i używany głównie przez elektronikę Apple. uPnP (Universal Plug and Play) to technologia ułatwiająca automatyczną konfigurację sieci lokalnych, m.in. udostępniać treści. Serwer z funkcjami multimedialnymi warto poszukać w pierwszej kolejności, jeśli dla Twojej sieci lokalnej ważna jest możliwość pracy ze strumieniowaniem wideo/audio.

- Transkodowanie. Funkcja umożliwiająca konwersję materiałów audio i wideo z jednego formatu na inny bezpośrednio podczas odtwarzania. Innymi słowy, plik na serwerze NAS jest przechowywany w jednym formacie i może być przesłany do urządzenia zewnętrznego w innym, konwersja zostanie zapewniona przez sam serwer. Należy pamiętać, że zestaw obsługiwanych formatów i ogólne możliwości transkodowania mogą być różne (w szczególności maksymalna rozdzielczość wideo jest nieuchronnie ograniczona); niuanse te należy wyjaśniać w każdym przypadku osobno. Jednak funkcja ta w każdym przypadku znacznie rozszerza możliwości odtwarzania treści multimedialnych i zmniejsza prawdopodobieństwo problemów z kompatybilnością.

- Klient BitTorrenta. Obecność tej funkcji pozwala na pracę z sieciami wymiany plików BitTorrent. Takie sieci są zbudowane na zasadzie „każdy serwer dla siebie”: informacje, które użytkownik pobiera, nie znajdują się na osobnym komputerze w sieci, ale na komputerach tych samych użytkowników. W tym samym czasie ten sam plik można otworzyć do pobrania w kilku miejscach, a klient BitTorrent jednocześnie pobiera różne jego części z różnych źródeł - to znacznie zwiększa szybkość. Obecnie sieci torrent są bardzo popularne jako źródło różnego rodzaju danych, od filmów po specjalistyczne oprogramowanie. Warto jednak zachować ostrożność: otwarte publikowanie treści w sieciach torrentowych może naruszać prawa autorskie.

- Serwer pocztowy. Możliwość obsługi NAS w trybie serwera do przetwarzania poczty e-mail. Na takim serwerze można tworzyć skrzynki pocztowe w formacie [użytkownik] @ [nazwa_firmy] .com, działa on jako repozytorium dla poczty przychodzącej oraz jako usługa przekazywania poczty wychodzącej. Dodatkowe funkcje mogą obejmować automatyczne przekazywanie, ochronę przed spamem, filtry niestandardowe i inne. Funkcja ta jest niezbędna, jeśli potrzebujesz firmowego systemu poczty e-mail: Twoja własna pamięć wewnętrzna jest bardziej niezawodna z punktu widzenia bezpieczeństwa niż zewnętrzne usługi pocztowe, a także możliwość tworzenia unikalnych adresów e-mail może się przydać.

- Serwer bazy danych. Jak sama nazwa wskazuje, funkcja ta jest przydatna do tworzenia baz danych - usystematyzowanych tablic informacji, które mają być dostępne i przetwarzane z komputera. Jest zwykle implementowany z obsługą języka SQL. Jego osobliwość polega na tym, że użytkownik sieci nie musi znać konkretnej lokalizacji informacji w bazie danych – wystarczy, że wyśle zapytanie o to, jakie dane ma otrzymać, a sam serwer ich wyszukuje. Jest to bardzo wygodne podczas pracy z dużą ilością informacji, a jednocześnie nie jest wymagana duża moc od komputerów użytkowników – główne obciążenie spada na serwer.

- Serwer nadzoru wideo. Zestaw narzędzi programowych, który umożliwia wykorzystanie NAS jako miejsca przechowywania nagrań wideo z kamer monitorujących. Funkcje przechowywania wideo są różne. Na przykład na niektórych serwerach może być przydzielona do tego pewna część pojemności roboczego dysków, a gdy się przepełni, najstarsze rekordy są automatycznie usuwane, zwalniając miejsce; w innych usuwanie odbywa się nie według objętości, ale według daty - na przykład materiały są przechowywane przez miesiąc, a następnie usuwane. Zarówno objętość, jak i okres przydatności do spożycia z reguły może ustawić sam użytkownik. A niektóre modele z wyjściem VGA (patrz wyżej) mogą być również używane jako systemy nadzoru „na żywo” – obraz z kamer jest wyświetlany na monitorze w czasie rzeczywistym, co może być przydatne np. do organizowania ochrony. Specyficzne możliwości NAS działającego w trybie serwera wideo mogą się różnić w zależności od modelu, ten punkt najlepiej sprawdzić zgodnie z oficjalnymi danymi producenta.

- Kopia zapasowa. Funkcja backupu służy do tworzenia kopii bezpieczeństwa danych (tzw. backup) w przypadku utraty lub uszkodzenia informacji na nośniku głównym. Kopie zapasowe można tworzyć na wbudowanej lub zewnętrznej pamięci, a nawet na innym urządzeniu przez sieć. Aby ułatwić to zadanie, wielu programistów tworzy różne specjalistyczne narzędzia programowe; w tym przypadku zakłada się, że serwer NAS obsługuje jedno z tych narzędzi. Ponadto możliwości oprogramowania można uzupełnić sprzętem - na przykład osobnym przyciskiem szybkiego kopiowania.

- DDNS. Akronim dla Dynamic DNS - „dynamiczny DNS”. Funkcja ta umożliwia przypisanie stałej nazwy domeny do urządzenia z dynamicznym adresem IP. Nazwa domeny to nazwa urządzenia w sieci lokalnej lub adres strony internetowej w Internecie (na przykład m.ua lub e-katalog.ru). Adres IP to informacja o usłudze w postaci kodu cyfrowego; to dzięki niej sprzęt sieciowy może znaleźć żądane urządzenie i wydać z niego wymagane dane. W rzeczywistości „współrzędne” sieci podstawowej to dokładnie adres IP; jednak raczej trudno jest zapamiętać adresy w postaci ciągu liczb, dlatego pojawiły się nazwy domen - są znacznie wygodniejsze dla osoby. Zarówno w Internecie, jak i w sieciach lokalnych za powiązanie nazwy domeny z adresem IP odpowiada tzw. „link”. Serwery DNS: dla każdej domeny rejestrowany jest jej własny adres IP w bazie danych takiego serwera. Jednak ze względów technicznych często zdarzają się sytuacje, gdy serwer NAS musi korzystać z dynamicznego (zmiennego) adresu IP; w związku z tym, aby informacje były stale dostępne dla tej samej nazwy domeny, konieczne jest aktualizowanie danych na serwerze DNS przy każdej zmianie IP. To jest dokładnie to, co zapewnia funkcja DDNS.

- Integracja z domenami. Narzędzie programowe, które ułatwia integrację NAS z istniejącą domeną (obszar sieci komputerowej). Każda domena posiada tzw. administrator to serwer przechowujący informacje o użytkownikach, przede wszystkim loginy, hasła i prawa dostępu. Po połączeniu z NAS z funkcją integracji, wszystkie te ustawienia mogą być automatycznie importowane, dzięki czemu w odniesieniu do zawartości NAS wszyscy użytkownicy będą mieli takie same prawa dostępu jak do całej zawartości domeny. Eliminuje to potrzebę tworzenia i konfigurowania oddzielnych kont przez administratora (co może być dość kłopotliwe w dużych sieciach).

- AirPlay. Serwer NAS obsługuje technologię AirPlay. Jest to zastrzeżone rozwiązanie firmy Apple, pierwotnie stworzone do bezprzewodowej transmisji treści audio i wideo z technologii Apple do telewizorów, systemów audio i innych urządzeń odtwarzających; jednak w dzisiejszych czasach elektronika innych producentów może również działać jako nadajnik. O tym właśnie mówimy w tym przypadku: obsługa AirPlay pozwala na przesyłanie treści wideo i/lub audio przechowywanych na serwerze z serwera NAS do urządzeń zewnętrznych. Aby to zrobić, NAS i odbiornik sygnału kompatybilny z AirPlay muszą znajdować się w tej samej sieci, a odbiornik sygnału musi być podłączony przez Wi-Fi. Sterowanie taką transmisją odbywa się zwykle albo przez przeglądarkę na komputerze, albo przez autorską aplikację na urządzeniu mobilnym, która pełni rolę pilota. Zwracamy również uwagę, że oprócz oryginalnego AirPlay może być zapewniona również kompatybilność z AirPlay 2 – jest to ulepszona wersja tej technologii, która w szczególności prezentowała możliwość pracy w formacie multi-room (jednoczesna transmisja różne ścieżki audio do różnych urządzeń w sieci).

- Chromecasta. Obsługa serwera NAS dla technologii Chromecast. Ta opracowana przez Google technologia jest pod wieloma względami podobna do opisanej powyżej AirPlay: jest przeznaczona przede wszystkim do bezprzewodowego przesyłania dźwięku i obrazu do urządzeń odtwarzających. W związku z tym zastosowanie Chromecasta jest prawie takie samo: serwer NAS z tą funkcją może transmitować przechowywane na nim treści do telewizora, projektora, systemu audio lub innego kompatybilnego urządzenia odtwarzającego podłączonego przez Wi-Fi do tej samej sieci lokalnej. Sterowanie odbywa się również najczęściej za pośrednictwem interfejsu webowego lub aplikacji mobilnej.

System operacyjny

System operacyjny (OS) zainstalowany na serwerze NAS w standardzie. System operacyjny jest podstawą oprogramowania do funkcjonowania każdego komputera, bez niego nie można korzystać z maszyny. W związku z tym kupując serwer z preinstalowanym systemem operacyjnym, otrzymujesz urządzenie prawie gotowe do użycia - dodatkowe działania sprowadzają się w rzeczywistości do dostrojenia systemu i zainstalowania (w razie potrzeby) dodatkowego oprogramowania.

Różne wyspecjalizowane aplikacje są wydawane dla różnych systemów operacyjnych, aby ułatwić korzystanie z funkcji serwera NAS; niektóre z nich (patrz „Funkcje oprogramowania”) mogą być również preinstalowane. W związku z tym, znając nazwę systemu operacyjnego, możesz do pewnego stopnia określić narzędzia dostępne do pracy z urządzeniem.

Pamiętaj, że niektóre systemy operacyjne są płatne i są wliczone w cenę NAS.

Procesor

Model i specyfikacja procesora zamontowanego w serwerze NAS. Szybkość działania urządzenia w dużej mierze zależy od specyfikacji, przede wszystkim od częstotliwości taktowania. Jednak w praktyce parametr ten jest często bardziej wartością informacyjną: w przypadku prostych codziennych zadań (np. serwery FTP i wydruku, patrz „Funkcje programowe”) duża moc obliczeniowa nie jest wymagana. Jednakże do pracy z obszernymi bazami danych może się przydać szybszy procesor. Wśród procesorów dominują dwie firmy – Intel z procesorami Core i3, Core i5, Core i7, Xeon oraz AMD, w której można wyróżnić serię Ryzen.

Pamięć RAM

Ilość pamięci RAM na serwerze NAS. Wraz z procesorem jest to jeden ze wskaźników decydujących o szybkości działania systemu – im więcej pamięci, tym wyższa moc obliczeniowa. Jednak w praktyce nie zawsze ma sens ściganie dużych ilości „RAM”, które mogą sięgać 4 GB, 8 GB, a nawet więcej; zobacz Procesor, aby uzyskać szczegółowe informacje.
D-Link DNS-320L często porównują
Synology DiskStation DS115j często porównują