SATA 3
Trzecia wersja standardu SATA wykorzystywanego w technologii komputerowej do łączenia dysków wewnętrznych. Różni się od poprzedniej wersji SATA 2 (patrz wyżej) zwiększoną prędkością przesyłania danych – w praktyce około 5,9 Gb/s (600 MB/s) – a także szeregiem optymalizacji zużycia energii. Możesz
podłączyć dyski do SATA 3 i wcześniejszych wersji, jednak szybkość działania przy takim połączeniu będzie ograniczona charakterystyką samego dysku.
PCI-E
Liczba
gniazd PCI-E przewidzianych w konstrukcji serwera NAS.
PCI-E to jeden z najpopularniejszych nowoczesnych interfejsów do łączenia podzespołów wewnętrznych z płytą główną komputera. W szczególności w serwerach NAS może być stosowany w szczególności do bezprzewodowych adapterów i dysków SSD; w tym drugim przypadku PCI-E pozwala na szybsze prędkości niż SATA i wykorzystuje pełny potencjał pamięci półprzewodnikowej. A liczba takich złączy odpowiada liczbie komponentów PCI-E, które można jednocześnie zainstalować na serwerze.
Zwróć uwagę, że połączenie PCI-E może wykorzystywać inną liczbę linii (1x, 4x, 16x), a do normalnego działania konieczne jest, aby gniazdo na „płycie głównej” miało nie mniej linii niż instalowany komponent. W praktyce oznacza to, że komponent ze złączem 1x bez problemu zmieści się w dowolnym gnieździe, ale przy większym złączu złącze należy wyjaśniać osobno. Jednak w przypadku serwerów NAS rzadko są wymagane nawet możliwości PCI-E 4x, nie mówiąc już o 16x.
Funkcja RAID
Serwer NAS obsługuje technologię RAID. Termin ten jest skrótem od „redundantnej macierzy niezależnych dysków”, co oznacza „nadmiarową macierz niezależnych dysków”. W związku z tym tylko modele z więcej niż jednym gniazdem do przechowywania mogą mieć tę funkcję (patrz „Gniazda do przechowywania”).
Istnieje kilka opcji łączenia dysków w nadmiarową macierz, różnią się one szeregiem cech: niektóre koncentrują się na zwiększeniu szybkości działania, inne - na odporności na awarie. Jednak wszystkie macierze RAID mają dwie kluczowe różnice w porównaniu z systemami z dyskami bez macierzy. Po pierwsze, macierz RAID jest postrzegana przez system jako jeden dysk twardy. Drugi to „redundancja”: całkowita objętość dysków zawartych w macierzy musi być większa niż objętość danych, która ma być na nich przechowywana. Wynika to z faktu, że macierz wykorzystuje informacje serwisowe, które muszą być przechowywane na tych samych dyskach (jednak wyjątkiem jest RAID 0, patrz niżej).
Najpopularniejsze obecnie wersje RAID to:
-
RAID 0. Tablica dwóch lub więcej dysków, na których informacje są zapisywane przez przeplatanie: najpierw dane są dzielone na bloki o tej samej długości, a następnie każdy z tych bloków jest kolejno zapisywany na „własnym” dysku. Na przykład, jeśli macierz RAID 0 składa się z 3 dysków, a plik jest podzielony na 7 części, to pierwszy dysk będzie zawierał części 1, 4 i 7, drugi - 2 i 5, a trzeci - 3 i 6. Osobliwości
...ą tej wersji jest to, że w rzeczywistości nie jest to RAID, ponieważ pozbawiony "redundancji" - wielkość macierzy odpowiada sumie wolumenów dysków. Główną zaletą RAID 0 jest to, że znacznie poprawia wydajność; im wyższy, tym więcej dysków jest zawartych w macierzy. Z drugiej strony niezawodność takich systemów jest niższa niż pojedynczych dysków: w przypadku awarii któregoś z dysków cała macierz staje się niedostępna, a im więcej dysków jest używanych, tym większe prawdopodobieństwo tego. Minimalna liczba dysków dla RAID 0 to dwa.
- RAID 1. W tego typu macierzach informacje zapisywane są na zasadzie dublowania: dwa dyski, na których informacje są całkowicie identyczne. Zapewnia to bardzo solidną odporność systemu na awarie: dane zawarte w macierzy będą dostępne w pełnym wolumenie, bez dodatkowych poprawek i poważnych spadków wydajności, nawet w przypadku całkowitej awarii jednego z dysków. Ponadto w ten sposób osiąga się pewien wzrost szybkości odczytu, a wymiana na gorąco (patrz wyżej) zwykle nie powoduje problemów. Wadą są wysokie koszty budowy: trzeba zapłacić za dwa dyski twarde, uzyskując objętość jednego. Jednak w niektórych przypadkach może to być całkowicie akceptowalna cena za zwiększoną niezawodność.
- RAID 5. W takich macierzach, w przeciwieństwie do RAID 0 i 1 (patrz wyżej), na dyskach przechowywane są nie tylko podstawowe informacje, ale także informacje serwisowe - w postaci danych do korekcji błędów (tzw. sum kontrolnych). W takim przypadku oba typy informacji są rozłożone równomiernie na wszystkich dyskach. Na przykład w macierzy RAID 5 składającej się z 4 dysków pierwszy zapisywalny „kawał” danych zostanie podzielony równo między dyski 1, 2 i 3, a suma kontrolna zostanie zapisana na dysku 4; druga część znajduje się między dyskami 1,2 i 4, a suma kontrolna jest zapisywana na dysku 3 itd. Zapewnia to dobrą odporność na awarie: macierz zapewnia dostęp do danych w przypadku całkowitej awarii któregokolwiek z dysków. Ponadto macierz RAID 5 charakteryzuje się bardzo niskim poziomem redundancji: objętość robocza macierzy równa się rozmiarowi najmniejszego dysku pomnożonemu przez (n-1), gdzie n to całkowita liczba dysków. Główne wady RAID 5 to jego stosunkowo niska wydajność, która w przypadku awarii spada jeszcze bardziej; wynika to z obfitości dodatkowych operacji związanych z wykorzystaniem sum kontrolnych. Ponadto, jeśli jeden z dysków ulegnie awarii, niezawodność pozostałej macierzy zostaje zredukowana do poziomu RAID 0 (patrz wyżej), a pozostałe dyski są znacznie obciążone, co dodatkowo zwiększa ryzyko dodatkowej awarii; jeśli dwa dyski ulegną awarii, dane można odzyskać tylko za pomocą specjalnych metod. Minimalna wymagana liczba dysków dla RAID 5 to trzy.
- RAID 10. Kombinacja macierzy typu RAID 0 i RAID 1 (patrz wyżej): dyski łączone są parami w macierze lustrzane RAID 1, a cały system działa na zasadzie RAID 0, z sekwencyjnym zapisem informacji na każdej parze dysków. Ten schemat pozwala zachować wysoką wydajność charakterystyczną dla klasycznej macierzy RAID 0, eliminując jednocześnie jej główną wadę - zawodność. Niezależnie od liczby dysków macierz RAID 10 jest całkowicie niewrażliwa na awarię pojedynczego dysku i może z łatwością przetrwać utratę połowy dysków, jeśli wszystkie znajdują się w różnych parach lustrzanych. Jednocześnie jednoczesny rozpad jednej pary prowadzi do nieodwracalnej utraty informacji. Kolejną wadą jest wysoka redundancja charakterystyczna dla RAID 1: pojemność użytkowa macierzy to połowa sumy woluminów wszystkich dysków. Do zbudowania macierzy RAID 10 wymagane są co najmniej 4 dyski, a w każdym razie liczba musi być parzysta.
- JBOD. Skrót od „Just a bunch of disks” – „tylko kilka dysków”. Ta nazwa wprawdzie zgrubna, ale dość trafnie opisuje cechy macierzy tego typu: JBOD nie zapewnia „redundancji”, nie wykorzystuje dodatkowych technologii, takich jak sumy kontrolne (patrz RAID 5), a objętość tablicy jest równa łączna objętość wszystkich zawartych w niej dysków. Jednocześnie dyski są połączone w swego rodzaju szereg. Oznacza to, że podczas zapisywania każdego następnego pliku, pozostałe wolne miejsce na poprzednim dysku w kolejce jest najpierw wypełniane, a jeśli nie ma wystarczającej ilości miejsca, reszta danych jest zapisywana na następnym. Na przykład, jeśli zapiszesz dwa pliki o pojemności 70 GB do pustej tablicy JBOD składającej się z dysków o pojemności 100 GB, pierwszy plik zmieści się w całości na pierwszym dysku, a drugi zajmie pozostałe 30 GB na pierwszym i 40 GB na drugim. . Podobnie, jeśli objętość pliku przekracza objętość całego dysku - w naszym przykładzie plik 120 GB zajmie cały pierwszy dysk i 20 GB drugiego. Zaletami JBOD są dobra wydajność przy niskim obciążeniu procesora oraz możliwość łączenia dysków o różnych rozmiarach i prędkościach. Ponadto są one nieco bardziej odporne na awarie niż podobne pod wieloma względami macierze RAID 0 (patrz wyżej): awaria pojedynczego dysku niekoniecznie prowadzi do nieodwracalnej utraty danych dla całej macierzy. Jednocześnie niezawodność JBODs jest nadal nieco niższa niż pojedynczych dysków, dlatego można je traktować jedynie jako narzędzie do poprawy wydajności.
Zauważ, że różnorodność standardów RAID stosowanych we współczesnych serwerach NAS nie ogranicza się do powyższych. Dodatkowe opcje mogą obejmować między innymi:
- RAID 3 i RAID 4 są podobne do opisanego powyżej RAID 5, jednak w tych formatach sumy kontrolne są zapisywane na jednym dedykowanym dysku i nie są równomiernie rozłożone na wszystkich dyskach. Poprawia to wydajność (dla RAID 3 tylko w niektórych przypadkach), ale zmniejsza niezawodność dysku kontrolnego. Z wielu powodów są one dość słabo rozłożone.
- RAID 6 - kolejny odpowiednik RAID 5, różni się tym, że wykorzystuje nie jeden, a dwa zestawy sum kontrolnych, również równomiernie rozłożonych na wszystkich dyskach. To znacznie zwiększa niezawodność, ale obniża wydajność i zwiększa poziom redundancji - woluminy nie jednego, ale dwóch dysków „wypadają” z całkowitego pojemności.
- RAID 0 + 1. Może oznaczać 2 opcje. Najpopularniejsza jest macierz dwóch macierzy RAID 0 (w paski) połączonych w RAID 1 (dublowanie). Dla niektórych producentów RAID 0+1 jest używany jako oznaczenie dla zaawansowanej technologii, która pozwala na „odbicie lustrzane” informacji na nieparzystej liczbie dysków: na przykład w macierzy trzydyskowej dublowany będzie pierwszy fragment danych na dyskach 1 i 2, drugi - na 2 i 3, trzeci - na 3 i 1 itd.
- RAID 50 i RAID 60. Macierze takie jak odpowiednio RAID 5 i RAID 6 składają się z grup dysków połączonych w RAID 0. Zapewniają wysoką niezawodność i wydajność, ale są drogie i trudne w utrzymaniu.
Istnieją również inne warianty „złożonego” RAID – na przykład w RAID 51 dwie macierze RAID 5 są ułożone w „dublowaną” parę.USB 2.0
Liczba
portów USB 2.0 przewidzianych w konstrukcji serwera NAS.
Złącza USB są używane w technologii komputerowej do podłączania różnych zewnętrznych urządzeń peryferyjnych. W przypadku serwerów NAS mówimy najczęściej o dyskach zewnętrznych - pendrive'ach, dyskach twardych itp. Dzięki temu można przepisać informacje z dysku wewnętrznego na zewnętrzny (np. do celów backupu) lub odwrotnie, a nawet zwiększyć całkowitą objętość roboczą serwera... Ponadto w modelach z wyjściem VGA (patrz poniżej) klawiaturę można również podłączyć do portu USB, a w modelach z funkcją serwera wydruku (patrz „Funkcje oprogramowania”) odpowiednio — drukarkę. Dla większej wygody złącze USB można przenieść na panel przedni (patrz poniżej).
Jeśli chodzi konkretnie o USB 2.0, dziś ta wersja jest powszechnie uważana za przestarzałą - ze względu na stosunkowo niską prędkość (do 480 Mbit/s) i niską moc dostarczaną przez złącze. Port ten może służyć do podłączania urządzeń peryferyjnych i nowszych wersji, ale prędkość będzie ograniczona możliwościami wersji 2.0, a zasilanie może być niewystarczające. Dlatego we współczesnych serwerach NAS takie złącza są dość rzadkie - głównie jako dodatek do nowszego i szybszego USB 3.2 gen1 (patrz poniżej), przeznaczonego do stosunkowo bezpretensjonalnych urządzeń peryferyjnych, takich jak klawiatury.
USB 3.2 gen1
Ilość
portów USB 3.2 gen1 przewidziana w konstrukcji serwera NAS.
Złącza USB są używane w technologii komputerowej do podłączania różnych zewnętrznych urządzeń peryferyjnych. W przypadku serwerów NAS mówimy najczęściej o dyskach zewnętrznych - pendrive'ach, dyskach twardych itp. Dzięki temu można przepisać informacje z dysku wewnętrznego na zewnętrzny (np. do celów backupu) lub odwrotnie, a nawet zwiększyć całkowitą objętość roboczą serwera... Ponadto w modelach z wyjściem VGA (patrz poniżej) klawiaturę można również podłączyć do portu USB, a w modelach z funkcją serwera wydruku (patrz „Funkcje oprogramowania”) odpowiednio — drukarkę. Dla większej wygody złącze USB można przenieść na panel przedni (patrz poniżej).
W szczególności USB 3.2 gen1 (wcześniej znany jako USB 3.0 i USB 3.1 gen1) jest bezpośrednim następcą USB 2.0 i najpopularniejszym obecnie standardem USB. Ta wersja zapewnia szybkość transmisji danych do 4,8 Gb/s, a także dość wysokie zasilanie. Co więcej, takie złącza są wstecznie kompatybilne z urządzeniami peryferyjnymi korzystającymi z USB 2.0.
USB C
Liczba
portów USB C przewidziana w konstrukcji serwera NAS.
Podobnie jak bardziej tradycyjne USB 2.0 i USB 3.2 gen1 (patrz wyżej), złącza tego typu służą głównie do podłączania zewnętrznych urządzeń peryferyjnych: napędów do wymiany danych i/lub rozbudowy pojemności roboczych serwera NAS, klawiatur do bezpośredniego sterowania itp. USB C ma jednak swoją specyfikę. Przede wszystkim jest to konstrukcja złącza: ma niewielkie wymiary (nieco większe niż microUSB) i konstrukcję dwustronną (wtyk można podłączyć z dowolnej strony, w przeciwieństwie do poprzednich standardów). Drugą cechą jest to, że inne interfejsy można realizowywać poprzez fizyczne złącze USB C – na przykład Thunderbolt, które ma również tryb wyjścia wideo. Jednak głównym formatem tego typu portu jest nadal podłączenie urządzeń USB; pod względem możliwości takie podłączenie odpowiada USB 3.2 gen1 (z prędkością do 4,8 Gb/s) lub USB 3.2 gen2 (do 10 Gb/s).
Dla większej wygody złącze USB C można umieścić na panelu przednim (patrz poniżej).
eSATA
Ilość
złączy eSATA przewidzianych w konstrukcji serwera NAS.
eSATA to wyspecjalizowany interfejs do podłączania dysków zewnętrznych, przede wszystkim dysków twardych. Zapewnia transfer danych z szybkością do 2,4 Gb/s — o połowę niższy niż w przypadku USB 3.2 gen1, ale zauważalnie szybszy niż USB 2.0. A wyraźną zaletą takiego interfejsu jest to, że pozwala pozostawić wolne porty USB, które mogą być wymagane dla innych urządzeń. Jednocześnie dyski eSATA nie są w naszych czasach zbyt popularne, dlatego tego typu złącza są dostarczane w serwerach NAS dość rzadko (a najczęściej w nie więcej niż jednym).
Czytnik kart pamięci
Wbudowany slot do odczytu kart pamięci - najczęściej standardu SD.
Karty pamięci są obsługiwane przez prawie wszystkie nowoczesne laptopy i aparaty fotograficzne, większość kamer sportowych, a także kieszonkowe gadżety, takie jak smartfony i tablety.
Serwer NAS z czytnikiem kart będzie więc wygodny przede wszystkim, jeśli planujesz często wymieniać dane z takimi urządzeniami – na przykład kopiować zrobione zdjęcia z aparatu. Zauważ, że mniejsza wersja kart SD - microSD jest zwykle używana w sprzęcie kieszonkowym, ale takie karty są również kompatybilne z gniazdami SD przy użyciu odpowiednich adapterów.
Wyjście VGA
Złącze do wyprowadzania sygnału wideo na zewnętrzny ekran. Umożliwia podłączenie monitora do serwera NAS i monitorowanie jego parametrów pracy; a niektóre modele mają nawet oprogramowanie układowe z pełnowartościowym interfejsem graficznym, można je podłączyć do klawiatury i myszy i można nimi sterować bezpośrednio za pomocą monitora i klawiatury / myszy. Należy jednak zauważyć, że VGA wykorzystuje format analogowy, obsługuje stosunkowo niskie rozdzielczości (w praktyce do 1280x1024) i nie zapewnia transmisji dźwięku. Dlatego w naszych czasach jest to rzadkość, ponieważ jest stopniowo zastępowana przez bardziej zaawansowane interfejsy wideo - przede wszystkim HDMI (patrz niżej).