Polska
Katalog   /   Komputery   /   Podzespoły   /   Dyski twarde

Porównanie Hitachi Travelstar Z7K500.B 2.5" HTS725050B7E630 500 GB vs Hitachi HGST Ultrastar A7K1000 HUA721075KLA330 750 GB

Dodaj do porównania
Hitachi Travelstar Z7K500.B 2.5" HTS725050B7E630 500 GB
Hitachi HGST Ultrastar A7K1000 HUA721075KLA330 750 GB
Hitachi Travelstar Z7K500.B 2.5" HTS725050B7E630 500 GBHitachi HGST Ultrastar A7K1000 HUA721075KLA330 750 GB
od 214 zł
Produkt jest niedostępny
od 82 zł
Wkrótce w sprzedaży
TOP sprzedawcy
Typ dyskuwewnętrznywewnętrzny
Rodzaj dyskuHDDHDD
Przeznaczeniedo PCdo serwera
Pojemność500 GB750 GB
Format2.5 "3.5 "
Gwarancja producenta3 lata5 lat
Interfejs
Interfejs
SATA
SATA 2
SATA 3
SATA
SATA 2
 
Specyfikacja
Pojemność bufora32 MB32 MB
Prędkość obrotowa7200 obr./min7200 obr./min
Liczba talerzy4 szt.
Średni czas dostępu12 ms8 ms
Pobór mocy w trybie pracy2 W
Pobór mocy w trybie czuwania0.85 W8.1 W
Odporność na wstrząsy w trakcie pracy400 G70 G
Poziom hałasu podczas odczytu25 dB
Poziom hałasu w trybie czuwania23 dB
Średni czas bezawaryjnej pracy1.2 mln. godzin
Średni czas bezawaryjnej pracy600 tys. razy
Dane ogólne
Wymiary70x100x7 mm102x26x147 mm
Waga92 g700 g
Data dodania do E-Katalogpaździernik 2017grudzień 2015

Przeznaczenie

Ogólne przeznaczenie dysku twardego to rodzaj urządzenia, do którego był pierwotnie przeznaczony.

- Do PC. Dyski twarde przeznaczone do użytku z konwencjonalnymi komputerami domowymi i laptopami. Możliwość zainstalowania wewnętrznego dysku twardego (patrz „Wykonanie”) zależy bezpośrednio od współczynnika kształtu (patrz odpowiedni punkt), podczas gdy modele zewnętrzne nie podlegają takim ograniczeniom - dla nich wystarczy mieć odpowiednie złącze połączeniowe. Należy również pamiętać, że prawie wszystkie zewnętrzne dyski twarde są zaprojektowane specjalnie dla komputerów osobistych; wykonanie modeli serwerowych w postaci urządzeń zewnętrznych nie jest technicznie uzasadnione.

- Do serwerów. Dyski twarde przeznaczone do serwerów charakteryzują się zwiększoną prędkością i niezawodnością, ponieważ stale muszą odbierać i wysyłać duże ilości informacji. Aby zapewnić szybką pracę, mogą być wyposażone w zwiększoną prędkość obrotową (do 15 000 obr./min). Takie dyski są wykonywane tylko jako urządzenia wewnętrzne (patrz „Wykonanie”) i oprócz SATA mogą używać innych, bardziej specyficznych typów podłączenia - na przykład SAS (patrz „Rodzaj podłączenia”).

- Do konsoli do gier. Specjalistyczne dyski twarde przeznaczone do użytku z konsolami do gier. Są one wykonane wyłącznie w postaci urządzeń zewnętrznych (patrz „Wykonanie...”), przeznaczone głównie do przechowywania gier – w tym zapisów i profili ustawień użytkownika. Główną różnicą między takimi urządzeniami a klasycznymi zewnętrznymi dyskami twardymi jest właśnie optymalizacja pracy z konsolami do gier, w tym obecność specjalnych narzędzi programowych do lepszej integracji. Wiele z tych dysków zostało pierwotnie zaprojektowanych do konkretnego modelu lub rodziny konsol.

Pojemność

Pojemność nominalna to jeden z kluczowych parametrów dysku twardego, określający, ile informacji może się na nim zmieścić. W przypadku dysków SSHD ta pozycja wskazuje pojemność tylko dysku twardego, a w przypadku macierzy RAID — całkowitą pojemność macierzy.

Ilość informacji we współczesnym świecie stale rośnie i wymaga coraz pojemniejszych urządzeń pamięci masowej. Dlatego w większości przypadków warto wybrać większy dysk. W rzeczywistości kwestia wyboru według tego parametru często zależy tylko od ceny: koszt napędu zależy bezpośrednio od pojemności.

Jeśli pytanie brzmi w ten sposób, że trzeba wybrać dysk „mniejszy i tańszy, ale wystarczający”, warto ocenić ilość informacji, z którymi mamy do czynienia, oraz specyfikę jej użytkowania. Na przykład dla zwykłego komputera biurowego przeznaczonego głównie do pracy z dokumentami dysk wewnętrzny o pojemności 2 TB, a nawet 1 TB będzie więcej niż wystarczający, a entuzjastyczny gracz będzie potrzebował 4 TB, 6 TB, a nawet 8 TB nie będzie zbędny. Jeśli używasz dysku do nagrywania z kamer, możesz kupić dysk HDD o pojemności 10 TB, 12 TB, 14 TB, 16 TB, 18 TB lub więcej.

Format

Współczynnik kształtu, w którym wykonany jest dysk twardy.

Wskaźnik ten określa przede wszystkim wymiary urządzenia. Ale jego bardziej szczegółowe znaczenie zależy od wykonania (patrz odpowiedni punkt). Tak więc w przypadku dysków zewnętrznych od współczynnika kształtu zależą tylko wymiary obudowy i jest to dość przybliżone. Ale wewnętrzne dyski twarde są instalowane w gniazdach o dobrze określonym rozmiarze i lokalizacji otworów na elementy złączne; te otwory są wykonane specjalnie dla tego lub innego współczynnika kształtu. W przypadku komputerów stacjonarnych standardowy współczynnik kształtu to 3,5", w przypadku laptopów - 2,5"; przy tym w ostatnich latach w komputerach stacjonarnych pojawiła się tendencja do miniaturyzacji i przejścia na dyski 2,5-calowe. Teoretycznie jest jeszcze mniejszy współczynnik kształtu - 1,8", ale w praktyce jest używany głównie wśród ultrakompaktowych zewnętrznych dysków twardych.

Gwarancja producenta

Gwarancja producenta na ten model.

W rzeczywistości jest to minimalna żywotność obiecana przez producenta, z zastrzeżeniem zasad działania. Najczęściej rzeczywista żywotność urządzenia jest znacznie dłuższa niż gwarantowana.

Interfejs

- SATA. Obecnie najpopularniejszy interfejs do podłączania wewnętrznych dysków twardych. Pierwsza wersja SATA zapewnia prędkość przesyłania danych około 1,2 Gb/s, SATA 2 ma praktyczną prędkość przesyłania danych około 2,4 Gb/s (300 MB/s), a najbardziej zaawansowana generacja SATA 3 ma prędkość 4,8 Gb/s (600 MB/s).

- eSATA. Modyfikacja interfejsu SATA przeznaczona do podłączania zewnętrznych dysków twardych; niekompatybilna z wewnętrznym SATA. Praktyczna prędkość przesyłania danych jest zbliżona do SATA 2 i wynosi około 2,4 Gb/s (300 MB/s).

- USB 2.0. Najwcześniejszy ze standardów USB występujących we współczesnych dyskach twardych - i tylko zewnętrznych (patrz "Wykonanie"). Zapewnia podłączenie do tradycyjnego pełnowymiarowego portu USB, prędkość przesyłania danych do 480 Mb/s, a także dość niski pobór mocy, dlatego dyski z tego typu podłączeniem często wymagają dodatkowego zasilania. W świetle tego wszystkiego, a także pojawienia się bardziej zaawansowanego standardu USB 3.2 (patrz niżej), obecnie USB 2.0 jest uważany za przestarzały i niezwykle rzadki, głównie w niedrogich i wczesnych modelach napędów. Niemniej jednak dysk z tym interfejsem można również podłączyć do nowszego portu USB - najważniejsze jest to, aby złącza pasowały.

- USB 3.2 Gen1 (wcześniejsze nazwy to USB 3.1 Gen...1 i USB 3.0). Standard podłączenia zewnętrznych HDD, który zastąpił opisany powyżej USB 2.0. Wykorzystuje tradycyjne pełnowymiarowe złącze USB, zapewnia prędkość przesyłania danych do 4,8 Gb/s (600 MB/s) oraz wyższą moc zasilania, dzięki czemu łatwiej obejść się bez zewnętrznego zasilania w takich dyskach. Jednak z tego samego powodu należy zachować ostrożność podczas podłączania dysków USB 3.2 Gen1 do starszych złączy USB 2.0 - takie złącze może nie mieć wystarczającej mocy, aby zasilać nowszy dysk.

- USB 3.2 Gen.2. Dalszy rozwój standardu USB 3.2 (wcześniej znanego jako USB 3.1 Gen2 i USB 3.1). Maksymalna prędkość przesyłania danych w tej wersji została zwiększona do 10 Gb/s, a zasilanie może osiągnąć 100 W (przy wsparciu dla technologii USB Power Delivery). Jednocześnie dyski z tego typu podłączeniem mogą współpracować z wcześniejszymi wersjami pełnowymiarowych złączy USB – najważniejsze, żeby zasilanie było wystarczające.

- USB C 3.2 Gen1 (wcześniejsze nazwy to USB C 3.1 Gen1 i USB C 3.0). Połączenie USB typu C, zgodne z USB 3.2 Gen1. Możliwości te szerzej opisano powyżej, różnica od „zwykłego” USB 3.2 Gen1 w tym przypadku polega jedynie na rodzaju złącza: jest to stosunkowo małe (nieco większe niż microUSB) gniazdo o odwracalnej konstrukcji. Ze względu na niewielkie rozmiary USB C można znaleźć w pełnowymiarowych komputerach i laptopach, a także w kompaktowych gadżetach, takich jak smartfony i tablety; niektóre dyski z tym podłączeniem są początkowo przyjazne dla urządzeń mobilnych.

- USB C 3.2 Gen2 (wcześniejsze nazwy to USB C 3.1 Gen2 i USB C 3.1). Aktualizacja i usprawnienie powyższego USB C 3.2 Gen1 - to samo złącze USB C i zwiększona prędkość przesyłania danych do 10 Gb/s (jak w „zwykłym” USB 3.2 Gen2).

- IEEE 1394. Powszechnie znany również jako FireWire. Złącze uniwersalne, podobne możliwościami do USB 2.0 (patrz wyżej), ale używane znacznie rzadziej, a obecnie praktycznie nieużywane.

- Thunderbolt. Szybki interfejs do podłączania zewnętrznych urządzeń peryferyjnych. Wykorzystywany jest głównie w komputerach i laptopach Apple, choć można go spotkać również w sprzęcie innych producentów. Zwróć uwagę, że we współczesnych dyskach twardych występują głównie dwie wersje Thunderbolt, które różnią się nie tylko prędkością działania, ale także złączem: Thunderbolt v2 (do 20 Gb/s) wykorzystuje wtyczkę miniDisplayPort, a Thunderbolt v3(do 40 Gb/s) - wtyczkę USB typu C (patrz wyżej). W związku z tym w niektórych dyskach twardych podłączenia USB C i Thunderbolt są realizowane przez pojedyncze złącze sprzętowe, które automatycznie wykrywa, do którego wejścia komputera jest podłączone urządzenie.

- SAS. Modyfikacja interfejsu SCSI, zapewnia prędkość przesyłania danych do 6 Gb/s (750 Mb/s). Stosowano głównie w serwerach, praktycznie nigdy nie używany w komputerach stacjonarnych i laptopach.

- Fibre Channel. Profesjonalny szybki interfejs, stosowany głównie w dyskach serwerowych („Przeznaczenie”); jest podobny pod wieloma względami do SAS. Dyski z możliwością wymiany podczas pracy; rzeczywista prędkość przesyłania danych przez Fibre Channel, w zależności od wersji, może osiągnąć 12,8 Gb/s.

Liczba talerzy

Liczba talerzy przewidzianych w konstrukcji dysku twardego.

Fizycznie dysk twardy składa się z jednego lub więcej talerzy, na których zapisywane są informacje. Może się zapewniać kilka talerzy w celu uzyskania pożądanej pojemności bez zwiększania współczynnika kształtu. Jednocześnie w takim napędzie musi być również zainstalowana odpowiednia liczba głowic odczytujących, co komplikuje konstrukcję, zmniejsza jego niezawodność i zwiększa jej koszt. Dlatego producenci dobierają liczbę talerzy opierając się na rozsądnym kompromisie między tymi punktami, a przy wyborze parametr ten jest bardziej referencyjnym niż praktycznym.

Średni czas dostępu

Czas, jaki zajmuje mechanice dysku twardego znalezienie losowych żądanych danych do odczytu. Dla każdego konkretnego przypadku czas wyszukiwania jest inny, ponieważ zależy od lokalizacji danych na powierzchni dysku i położenia głowicy odczytu, dlatego średnia wartość jest wskazywana w specyfikacji dysków twardych. Im krótszy średni czas dostępu, tym szybciej dysk działa, przy pozostałych warunkach równych.

Pobór mocy w trybie pracy

Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.

Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.

Pobór mocy w trybie czuwania

Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.

Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).
Dynamika cen
Hitachi Travelstar Z7K500.B 2.5" często porównują