Przeznaczenie
Ogólne przeznaczenie dysku twardego to rodzaj urządzenia, do którego był pierwotnie przeznaczony.
-
Do PC. Dyski twarde przeznaczone do użytku z konwencjonalnymi komputerami domowymi i laptopami. Możliwość zainstalowania wewnętrznego dysku twardego (patrz „Wykonanie”) zależy bezpośrednio od współczynnika kształtu (patrz odpowiedni punkt), podczas gdy modele zewnętrzne nie podlegają takim ograniczeniom - dla nich wystarczy mieć odpowiednie złącze połączeniowe. Należy również pamiętać, że prawie wszystkie zewnętrzne dyski twarde są zaprojektowane specjalnie dla komputerów osobistych; wykonanie modeli serwerowych w postaci urządzeń zewnętrznych nie jest technicznie uzasadnione.
-
Do serwerów. Dyski twarde przeznaczone do serwerów charakteryzują się zwiększoną prędkością i niezawodnością, ponieważ stale muszą odbierać i wysyłać duże ilości informacji. Aby zapewnić szybką pracę, mogą być wyposażone w zwiększoną prędkość obrotową (do 15 000 obr./min). Takie dyski są wykonywane tylko jako urządzenia wewnętrzne (patrz „Wykonanie”) i oprócz SATA mogą używać innych, bardziej specyficznych typów podłączenia - na przykład
SAS (patrz „Rodzaj podłączenia”).
-
Do konsol do gier. Specjalistyczne dyski twarde przeznaczone do użytku z konsolami do gier. Są one wykonane wyłącznie w postaci urządzeń zewnętrznych (patrz „Wykonanie”
...), przeznaczone głównie do przechowywania gier – w tym zapisów i profili ustawień użytkownika. Główną różnicą między takimi urządzeniami a klasycznymi zewnętrznymi dyskami twardymi jest właśnie optymalizacja pracy z konsolami do gier, w tym obecność specjalnych narzędzi programowych do lepszej integracji. Wiele z tych dysków zostało pierwotnie zaprojektowanych do konkretnego modelu lub rodziny konsol.Pojemność
Pojemność nominalna to jeden z kluczowych parametrów dysku twardego, określający, ile informacji może się na nim zmieścić. W przypadku dysków SSHD ta pozycja wskazuje pojemność tylko dysku twardego, a w przypadku macierzy RAID — całkowitą pojemność macierzy.
Ilość informacji we współczesnym świecie stale rośnie i wymaga coraz pojemniejszych urządzeń pamięci masowej. Dlatego w większości przypadków warto wybrać większy dysk. W rzeczywistości kwestia wyboru według tego parametru często zależy tylko od ceny: koszt napędu zależy bezpośrednio od pojemności.
Jeśli pytanie brzmi w ten sposób, że trzeba wybrać dysk „mniejszy i tańszy, ale wystarczający”, warto ocenić ilość informacji, z którymi mamy do czynienia, oraz specyfikę jej użytkowania. Na przykład dla zwykłego komputera biurowego przeznaczonego głównie do pracy z dokumentami dysk wewnętrzny o pojemności
2 TB, a nawet
1 TB będzie więcej niż wystarczający, a entuzjastyczny gracz będzie potrzebował
4 TB,
6 TB, a nawet
8 TB nie będzie zbędny. Jeśli używasz dysku do nagrywania z kamer, możesz kupić
dysk HDD o pojemności 10 TB,
12 TB,
14 TB,
16 TB,
18 TB lub więcej.
Sposób zapisu
-
CMR (Conventional Magnetic Recording) to klasyczny sposób zapisu magnetycznego charakteryzujący się dużą prędkością dostępu do danych. Dyski twarde CMR są stosowane w systemach, w których ważne jest zapewnienie jak największej (jak to możliwe) prędkości odczytu/zapisu danych. Są to komputery użytkowników, systemy nadzoru wideo itp. Główną wadą dysków twardych CMR jest duża złożoność tworzenia pojemnych dysków, co znajduje odzwierciedlenie w ich cenie. Ponadto dyski HDD z technologią CMR są dość energochłonne.
-
SMR (Shingled Magnetic Recording) to obiecujący sposób zapisu magnetycznego. SMR pozwala na wysoką gęstość danych, co z kolei zwiększa pojemność pamięci i obniża wartość rynkową. Dyski twarde SMR charakteryzują się niską prędkością ponownego zapisu danych, dlatego takie dyski pamięci są słabo przystosowane do użycia w systemach komputerowych klientów. Natomiast sprawdziły się dobrze podczas pracy w centrach przetwarzania danych, archiwach i podobnych systemach, dla których niska prędkość zapisu/ponownego zapisu nie jest krytyczna. Jednak niektóre firmy wciąż produkują rozwiązania SMR dla systemów osobistych, a nawet mobilnych. Te dyski twarde wykorzystują zoptymalizowaną technologię zapisu/ponownego zapisu o nazwie Drive-Managed SMR (DM-SMR).
Prędkość przesyłu danych
Prędkość przesyłu danych między dyskiem a urządzeniami klienckimi zależy od typu napędu, prędkości obrotowej, rozmiaru bufora pamięci i złączy połączeniowych. Ostatni parametr jest najważniejszy, ponieważ nie da się przekroczyć przepustowości konkretnego interfejsu.
Pobór mocy w trybie pracy
Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.
Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.
Pobór mocy w trybie czuwania
Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.
Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).
Odporność na wstrząsy w trakcie pracy
Parametr określający odporność dysku twardego na upadki i wstrząsy w trakcie pracy (czyli w stanie włączonym). Odporność na wstrząsy mierzona jest w G - jednostkach przeciążenia, 1 G odpowiada normalnej grawitacji. Im wyższa liczba G, tym dysk jest bardziej odporny na różnego rodzaju wstrząsy i tym mniej prawdopodobne jest, że ulegnie uszkodzeniu np. w przypadku upadku. Parametr ten jest szczególnie ważny w przypadku dysków zewnętrznych i dysków używanych w laptopach.
Poziom hałasu w trybie czuwania
Poziom hałasu wydawanego przez dysk w stanie bezczynności, gdy nie są wykonywane żadne operacje odczytu i/lub zapisu. Źródłem dźwięku w tym przypadku są talerze – obracają się one cały czas, gdy dysk jest włączony; ponieważ nie jest zaangażowana żadna inna mechanika, hałas w trybie czuwania jest generalnie niższy niż podczas odczytu/zapisu. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny poziom hałasu współczesnych dysków twardych w trybie czuwania wynosi około 40 dB - jest to porównywalne z niską głośnością mowy ludzkiej.
Średni czas bezawaryjnej pracy
MTBF to gwarantowany (minimalny) czas bezawaryjnej pracy dysku twardego. Im dłuższy MTBF, tym trwalsze i bardziej niezawodne urządzenie. Jednocześnie zauważamy, że po tym czasie dysk niekoniecznie od razu ulega awarii - większość modeli działa nawet po wyczerpaniu deklarowanych zasobów, ale producent nie daje tutaj żadnych gwarancji.